Skip to main content

A Four-Pixel Scheme for Singular Differential Equations

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

Singular diffusion equations such as total variation (TV) and balanced forward–backward (BFB) diffusion are appealing: They have a finite extinction time, and experiments show that piecewise constant structures evolve. Unfortunately, their implementation is awkward. The goal of this paper is to introduce a novel class of numerical methods for these equations in the 2D case. They are simple to implement, absolutely stable and do not require any regularisation in order to make the diffusivity bounded. Our schemes are based on analytical solutions for 2×2-pixel images which are combined by means of an additive operator splitting (AOS). We show that they may also be regarded as iterated 2D Haar wavelet shrinkage. Experiments demonstrate the favourable performance of our numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.-M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differential and Integral Equations 14(3), 321–360 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Andreu, F., Caselles, V., Diaz, J.I., Mazón, J.M.: Qualitative properties of the total variation flow. Journal of Functional Analysis 188(2), 516–547 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in R N. Journal of Differential Equations 184(2), 475–525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brox, T., Welk, M., Steidl, G., Weickert, J.: Equivalence results for TV diffusion and TV regularisation. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 86–100. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 32, 1895–1909 (1992)

    Article  Google Scholar 

  7. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  8. Coifman, R.R., Sowa, A.: New methods of controlled total variation reduction for digital functions. SIAM Journal on Numerical Analysis 39(2), 480–498 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dibos, F., Koepfler, G.: Global total variation minimization. SIAM Journal on Numerical Analysis 37(2), 646–664 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, X., Prohl, A.: Analysis of total variation flow and its finite element approximations. Technical Report 1864, Institute of Mathematics and its Applications, University of Minnesota, Minneapolis, MN. Submitted to Communications on Pure and Applied Mathematics (July 2002)

    Google Scholar 

  11. Keeling, S.L., Stollberger, R.: Nonlinear anisotropic diffusion filters for wide range edge sharpening. Inverse Problems 18, 175–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lu, T., Neittaanmäki, P., Tai, X.-C.: A parallel splitting up method and its application to Navier–Stokes equations. Applied Mathematics Letters 4(2), 25–29 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mrázek, P., Weickert, J.: Rotationally invariant wavelet shrinkage. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 156–163. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM Journal on Applied Mathematics 61(2), 633–658 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  16. Petrovic, A., Divorra Escoda, O., Vandergheynst, P.: Multiresolution segmentation of natural images: From linear to non-linear scale-space repesentations. IEEE Transactions on Image Processing 13(8), 1104–1114 (2004)

    Article  Google Scholar 

  17. Pollak, I., Willsky, A.S., Huang, Y.: Nonlinear evolution equations as fast and exact solvers of estimation problems. IEEE Transactions on Signal Processing (2004) (to appear)

    Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  19. Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tsurkov, V.I.: An analytical model of edge protection under noise suppression by anisotropic diffusion. Journal of Computer and Systems Sciences International 39(3), 437–440 (2000)

    Google Scholar 

  21. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  22. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7(3), 398–410 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Welk, M., Weickert, J., Steidl, G. (2005). A Four-Pixel Scheme for Singular Differential Equations. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_52

Download citation

  • DOI: https://doi.org/10.1007/11408031_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics