Skip to main content

CPT Violation and Decoherence in Quantum Gravity

  • Chapter
  • First Online:
Planck Scale Effects in Astrophysics and Cosmology

Part of the book series: Lecture Notes in Physics ((LNP,volume 669))

Abstract

In these lectures I review, in as much pedagogical way as possible, various theoretical ideas and motivation for violation of CPT invariance in some models of Quantum Gravity, and discuss the relevant phenomenology. Since the subject is vast, I pay particular emphasis on the CPT Violating decoherence scenario for quantum gravity, due to space-time foam. In my opinion this seems to be the most likely scenario to be realised in Nature, should quantum gravity be responsible for the violation of this symmetry. In this context, I also discuss how the CPT Violating decoherence scenario can explain experimental “anomalies” in neutrino data, such as LSND results, in agreement with the rest of the presently available data, without enlarging the neutrino sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory. Vols. 1 & 2 (Cambridge University Press 1987); J. Polchinski, String Theory. Vols. 1 & 2 (Cambridge University Press 1998). See also, E. Alvarez, lectures in this School.

    Google Scholar 

  2. J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Phys. Lett. B293 (1992) 37; J. Chaos, Solitons and Fractals 10, 345 (eds. C. Castro and M.S. El Naschie, Elsevier Science, Pergamon 1999) [hep-th/9805120], and references therein.

    Google Scholar 

  3. see for instance L. Smolin, “How far are we from the quantum theory of gravity?,” arXiv:hep-th/0303185, and references therein.

    Google Scholar 

  4. L. Smolin, Lectures in this volume.

    Google Scholar 

  5. J. Kowalski-Glikman, lectures in this School, and references therein.

    Google Scholar 

  6. G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, “Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity,” Int. J. Mod. Phys. A 12 (1997) 607 [arXiv:hep-th/9605211].

    Article  Google Scholar 

  7. J. R. Ellis, N. E. Mavromatos and A. S. Sakharov, “Synchrotron radiation from the Crab Nebula discriminates between models of space-time foam,” Astropart. Phys. 20 (2004) 669 [arXiv:astro-ph/0308403]. J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and A. S. Sakharov, “Space-time foam may violate the principle of equivalence,” Nature, Brief Comm. in press [arXiv:gr-qc/0312044]; J. R. Ellis, N. E. Mavromatos and M. Westmuckett, arXiv:gr-qc/0405066.

    Google Scholar 

  8. J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, “Dynamical formation of horizons in recoiling D-branes,” Phys. Rev. D 62 (2000) 084019 [arXiv:gr-qc/0006004].

    Article  Google Scholar 

  9. G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, “Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity,” Int. J. Mod. Phys. A12 (1997) 607 [arXiv:hep-th/9605211]; G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and S. Sarkar, “Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo,” Nature 393 (1998) 763 [arXiv:astro-ph/9712103].

    Google Scholar 

  10. J. R. Ellis, K. Farakos, N. E. Mavromatos, V. A. Mitsou and D. V. Nanopoulos, “Astrophysical probes of the constancy of the velocity of light,” Astrophys. J. 535 (2000) 139 [arXiv:astro-ph/9907340]; J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and A. S. Sakharov, “Quantum-gravity analysis of gamma-ray bursts using wavelets,” Astron. Astrophys. 402 (2003) 409 [arXiv:astro-ph/0210124].

    Google Scholar 

  11. T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation and Crab synchrotron emission: A new constraint far beyond Nature 424 (2003) 1019[arXiv: astro-ph/0212190].

    Article  Google Scholar 

  12. T. Jacobson, Lectures in this volume.

    Google Scholar 

  13. G. Amelino-Camelia, “Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale,” Int. J. Mod. Phys. D11 (2002) 35 [arXiv:gr-qc/0012051]; J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy scale,” Phys. Rev. Lett. 88 (2002) 190403 [arXiv:hep-th/0112090]; “Generalized Lorentz invariance with an invariant energy scale,” Phys. Rev. D 67 (2003) 044017 [arXiv:gr-qc/0207085].

    Google Scholar 

  14. See lectures by G. Amelino-Camelia and J. Kowalski-Glikman, this volume.

    Google Scholar 

  15. A. Grillo, Lectures in this volume.

    Google Scholar 

  16. T. Piran, Lectures in this Volume.

    Google Scholar 

  17. G. Lüders, Det. Kong. Danske Videnskabernes Selskab, Mat.-Fys. Medd. No 5 (1954) 28; “Proof Of The Tcp Theorem,” Annals Phys. 2 (1957) 1 [Annals Phys. 281 (2000) 1004]. W. Pauli, in Niels Bohr and the Development of Physics (Mc Graw-Hill, New York, 1955), p. 30.

    Google Scholar 

  18. see: A. Zichichi, in John Bell and the ten challenges of subnuclear physics (Bertlmann, R.A. (ed.) et al.: Quantum unspeakables, 2000), p. 429.

    Google Scholar 

  19. R. Jost, Helv. Phys. Acta 30 (1957), 409; also in Theoretical Physics in the Twentieth Century (Interscience, New York, 1960).

    Google Scholar 

  20. R. F. Streater and A. S. Wightman, PCT, Spin & Statistics, and All That (Benjamin, New York, 1964).

    Google Scholar 

  21. see for instance: J. A. Wheeler and K. Ford, Geons, Black Holes and Quantum Foam: A Life in Physics (Norton, New York, 1998); S. W. Hawking, “The Unpredictability Of Quantum Gravity,” Commun. Math. Phys. 87 (1982) 395.

    Google Scholar 

  22. L. J. Garay, “Quantum evolution in spacetime foam,” Int. J. Mod. Phys. A 14 (1999) 4079 [arXiv:gr-qc/9911002].

    Google Scholar 

  23. A. Kostelecky, “Gravity, Lorentz violation, and the standard model,” arXiv:hep-th/0312310 and references therein.

    Google Scholar 

  24. J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos and M. Srednicki, “Search For Violations Of Quantum Mechanics,” Nucl. Phys. B241 (1984) 381.

    Google Scholar 

  25. J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, “Testing quantum mechanics in the neutral kaon system,” Phys. Lett. B293 (1992) 142 [arXiv:hep-ph/9207268]; “CPT violation in string modified quantum mechanics and the neutral kaon system,” Int. J. Mod. Phys. A11 (1996) 1489 [arXiv:hep-th/9212057]; J. R. Ellis, J. L. Lopez, N. E. Mavromatos and D. V. Nanopoulos, “Precision tests of CPT symmetry and quantum mechanics in the neutral kaon system,” Phys. Rev. D53 (1996) 3846 [arXiv:hep-ph/9505340].

    Google Scholar 

  26. P. Huet and M. E. Peskin, “Violation of CPT and quantum mechanics in the K0 - anti-K0 system,” Nucl. Phys. B 434 (1995) 3 [arXiv:hep-ph/9403257];

    Article  Google Scholar 

  27. F. Benatti and R. Floreanini, “Complete positivity and correlated neutral kaons,” Phys. Lett. B 468 (1999) 287 [arXiv:hep-ph/9910508].

    Article  Google Scholar 

  28. J. Bernabeu, N. E. Mavromatos and J. Papavassiliou, “Novel type of CPT violation for correlated EPR states,” Phys. Rev. Lett. 92 (2004) 131601 [arXiv:hep-ph/0310180].

    Article  Google Scholar 

  29. A. Amorreti et al. [ATHENA Coll.], Nature 419 (2002) 456; G. Gabrielse et al. [ATRAP Coll.], Phys. Rev. Lett. 89 (2002) 213401.

    Google Scholar 

  30. R. Bluhm, arXiv:hep-ph/0308281; “Probing the Planck scale in low-energy atomic physics,” arXiv:hep-ph/0111323, and references therein.

    Google Scholar 

  31. N. E. Mavromatos, “Theoretical and phenomenological aspects of CPT violation,” Nucl. Instrum. Meth. B214 (2004) 1 [arXiv:hep-ph/0305215] and references therein. See also: http://ad3-proj-leap03.web.cern.ch/ad3-proj-leap03/

    Google Scholar 

  32. N. E. Mavromatos, “Neutrinos and the phenomenology of CPT violation,” Proc. Neutrino Oscillation in Venice (NO-VE) 2003 [arXiv:hep-ph/0402005].

    Google Scholar 

  33. G. J. Milburn, “Lorentz invariant intrinsic decoherence,” arXiv:gr-qc/0308021;

    Google Scholar 

  34. F. Dowker, J. Henson and R. D. Sorkin, “Quantum gravity phenomenology, Lorentz invariance and discreteness,” arXiv:gr-qc/0311055.

    Google Scholar 

  35. N. E. Mavromatos, “On CPT symmetry: Cosmological, quantum-gravitational and other possible violations and their phenomenology,” arXiv:hep-ph/0309221, Proc. Beyond the Desert 2003 (Castle Ringberg, Tegernsee, Germany, 9-14 Jun 2003) in press.

    Google Scholar 

  36. O. W. Greenberg, “Why is CPT fundamental?,” arXiv:hep-ph/0309309; O. W. Greenberg, “CPT violation implies violation of Lorentz invariance,” Phys. Rev. Lett. 89 (2002) 231602 [arXiv:hep-ph/0201258].

    Google Scholar 

  37. R. M. Wald, “Quantum Gravity And Time Reversibility,” Phys. Rev. D21 (1980) 2742.

    Google Scholar 

  38. N. E. Mavromatos and Alison Waldron-Lauda, in preparation.

    Google Scholar 

  39. G. Lindblad, Comm. Math. Phys. 48 (1976) 119; R. Alicki and K. Lendi, Lect. Notes Phys. 286 (Springer-Verlag, Berlin (1987)).

    Google Scholar 

  40. L. P. Houghston, Proc. Roy. Soc. London A452 (1996) 953; I.C. Percival, Proc. Roy. Soc. London A447 (1994) 189.

    Google Scholar 

  41. S. L. Adler, “Comment on a proposed Super-Kamiokande test for quantum gravity induced decoherence effects,” Phys. Rev. D62 (2000) 117901 [arXiv:hep-ph/0005220].

    Google Scholar 

  42. G. C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D34 (1986) 470; L. Di&x00027;osi, Phys. Lett. 129A (1988) 419; ibid. 132A (1988) 233; G.C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A42 (1990) 78.

    Google Scholar 

  43. N. Gisin and I. C. Percival, “Quantum state diffusion, localization and quantum dispersion entropy,” J. Phys. A 26 (1993) 2233.

    Article  Google Scholar 

  44. J. R. Ellis, S. Mohanty and D. V. Nanopoulos, “Quantum Gravity And The Collapse Of The Wave Function,” Phys. Lett. B 221 (1989) 113; “Wormholes Violate Quantum Mechanics In Squids,” Phys. Lett. B 235 (1990) 305.

    Google Scholar 

  45. see, for instance: D.F. Walls and G.J. Millburn, Phys. Rev. A 31 (1985), 2403.

    Google Scholar 

  46. W. H. Zurek, “Quantum Measurements And The Environment Induced Transition From Quantum To Classical,” NSF-ITP-88-197; “Decoherence and the transition from quantum to classical,” Phys. Today 44 (1991) 36.

    Google Scholar 

  47. N. E. Mavromatos, “String cosmology,” Lect. Notes Phys. 592, 392 (2002) [arXiv:hep-th/0111275].

    Google Scholar 

  48. Y. I. Kogan, University of British Columbia preprint UBCTP 91-13 (1991); “Regularization Of The Area Integration And Imaginary Parts Of The Correlation Functions In Liouville Theory,” Phys. Lett. B 265 (1991) 269.

    Article  Google Scholar 

  49. E. Gravanis and N. E. Mavromatos, “Vacuum energy and cosmological supersymmetry breaking in brane worlds,” Phys. Lett. B 547, 117 (2002) [arXiv:hep-th/0205298].

    Article  Google Scholar 

  50. A. B. Zamolodchikov, “';Irreversibility'; Of The Flux Of The Renormalization Group In A 2-D Field Theory,” JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565].

    Google Scholar 

  51. D. Kutasov, “Irreversibility of the renormalization group flow in two-dimensional quantum gravity,” Mod. Phys. Lett. A 7 (1992) 2943 [arXiv:hep-th/9207064].

    Google Scholar 

  52. N. E. Mavromatos and R. J. Szabo, “Gradient flow in logarithmic conformal field theory,” Phys. Lett. B 430 (1998) 94 [arXiv:hep-th/9803092].

    Article  Google Scholar 

  53. B. P. Schmidt et al., “The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae,” Astrophys. J. 507 (1998) 46 [arXiv:astro-ph/9805200]; S. Perlmutter et al. [Supernova Cosmology Project Coll.], “Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys. J. 517 (1999) 565 [arXiv:astro-ph/9812133].

    Google Scholar 

  54. C. L. Bennett et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results,” Astrophys. J. Suppl. 148 (2003) 1 [arXiv:astro-ph/0302207]; D. N. Spergel et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,” Astrophys. J. Suppl. 148 (2003) 175 [arXiv:astro-ph/0302209].

    Google Scholar 

  55. Y. J. Ng and H. van Dam, “Comment on Uncertainty in measurements of distance,” Class. Quant. Grav. 20, (2003) 393 [arXiv:gr-qc/0209021]; “Limit to space-time measurement,” Mod. Phys. Lett. A 9, (1994) 335.

    Google Scholar 

  56. see talk by S. Bludman, these proceedings and references therein (http:// axpd24.pd.infn.it/NO-VE/prog-NOVE.html).

    Google Scholar 

  57. D. V. Ahluwalia and M. Kirchbach, “Primordial space-time foam as an origin of cosmological matter-antimatter asymmetry,” Int. J. Mod. Phys. D10 (2001) 811 [arXiv:astro-ph/0107246]. See also: D. V. Ahluwalia-Khalilova, “Extended set of Majorana spinors, a new dispersion relation, and a preferred frame,” arXiv:hep-ph/0305336.

    Google Scholar 

  58. A. Agostini, “Fields and symmetries in kappa-Minkowski noncommutative spacetime,” arXiv:hep-th/0312305 and references therein.

    Google Scholar 

  59. G. Lambiase and P. Singh, “Matter-antimatter asymmetry generated by loop quantum gravity,” Phys. Lett. B565 (2003) 27 [arXiv:gr-qc/0304051].

    Google Scholar 

  60. J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and G. Volkov, “Gravitational-recoil effects on fermion propagation in space-time foam,” Gen. Rel. Grav. 32 (2000) 1777 [arXiv:gr-qc/9911055].

    Article  Google Scholar 

  61. L. B. Okun, “C, P, T are broken. Why not CPT?,” arXiv:hep-ph/0210052.

    Google Scholar 

  62. A. V. Kostelecky and M. Mewes, “Lorentz and CPT violation in the neutrino sector,” arXiv:hep-ph/0308300; “Lorentz and CPT violation in neutrinos,” arXiv:hep-ph/0309025.

    Google Scholar 

  63. see for instance: G. Drexlin, “Final Neutrino Oscillation Results From Lsnd And Karmen,” Nucl. Phys. Proc. Suppl. 118 (2003) 146, and references therein.

    Google Scholar 

  64. J. Alfaro, H. A. Morales-Tecotl and L. F. Urrutia, “Quantum gravity corrections to neutrino propagation,” Phys. Rev. Lett. 84 (2000) 2318 [arXiv:gr-qc/9909079].

    Article  PubMed  Google Scholar 

  65. J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, “Non-critical Liouville string escapes constraints on generic models of quantum gravity,” Phys. Rev. D65 (2002) 064007 [arXiv:astro-ph/0108295].

    Google Scholar 

  66. R. Brustein, D. Eichler and S. Foffa, “Probing the Planck scale with neutrino oscillations,” Phys. Rev. D65 (2002) 105006 [arXiv:hep-ph/0106309].

    Google Scholar 

  67. R. C. Myers and M. Pospelov, “Experimental challenges for quantum gravity,” Phys. Rev. Lett. 90 (2003) 211601 [arXiv:hep-ph/0301124].

    Article  MathSciNet  Google Scholar 

  68. G. Lambiase, “Spin flavor conversion of neutrinos in loop quantum gravity,” Class. Quant. Grav. 20 (2003) 4213 [arXiv:gr-qc/0302053].

    Article  Google Scholar 

  69. L. Wolfenstein, “Neutrino Oscillations In Matter,” Phys. Rev. D17 (1978) 2369. “Neutrino Oscillations And Stellar Collapse,” Phys. Rev. D20 (1979) 2634; S. P. Mikheev and A. Y. Smirnov, “Resonance Enhancement Of Oscillations In Matter And Solar Neutrino Spectroscopy,” Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441];

    Google Scholar 

  70. M. Blasone, J. Magueijo and P. Pires-Pacheco, “Neutrino mixing and Lorentz invariance,” arXiv:hep-ph/0307205.

    Google Scholar 

  71. J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, “How large are dissipative effects in noncritical Liouville string theory?,” Phys. Rev. D 63, 024024 (2001) [arXiv:gr-qc/0007044].

    Article  Google Scholar 

  72. M. Czachor and M. Kuna, “Puzzle of complete positivity in nonlinear frameworks: A case study,” Phys. Rev. A 58 (1998) 128 [arXiv:quant-ph/9708029].

    Article  Google Scholar 

  73. Y. Liu, L. z. Hu and M. L. Ge, “The Effect of quantum mechanics violation on neutrino oscillation,” Phys. Rev. D56 (1997) 6648; C. H. Chang, W. S. Dai, X. Q. Li, Y. Liu, F. C. Ma and Z. j. Tao, “Possible effects of quantum mechanics violation induced by certain quantum gravity on neutrino oscillations,” Phys. Rev. D60 (1999) 033006 [arXiv:hep-ph/9809371].

    Google Scholar 

  74. E. Lisi, A. Marrone and D. Montanino, “Probing possible decoherence effects in atmospheric neutrino oscillations,” Phys. Rev. Lett. 85 (2000) 1166 [arXiv:hep-ph/0002053].

    Article  Google Scholar 

  75. F. Benatti and R. Floreanini, “Massless neutrino oscillations,” Phys. Rev. D64 (2001) 085015 [arXiv:hep-ph/0105303].

    Google Scholar 

  76. H. V. Klapdor-Kleingrothaus, H. Paes and U. Sarkar, “Effects of quantum space time foam in the neutrino sector,” Eur. Phys. J. A8 (2000) 577 [arXiv:hep-ph/0004123].

    Google Scholar 

  77. A. Y. Smirnov, D. N. Spergel and J. N. Bahcall, Phys. Rev. D49 (1994) 1389.

    Google Scholar 

  78. [Heidelberg Moscow Coll.], Phys. Rev. Lett 83 (1999) 41; H. V. Klapdor-Kleingrothaus et al., hep-ph/99010205 [on behalf of GENIUS Coll.].

    Google Scholar 

  79. G. D. Hallewell [ANTARES Coll.], “Status Of The Antares Underwater Neutrino Telescope,” Nucl. Instrum. Meth. A502 (2003) 138, and references therein.

    Google Scholar 

  80. S. E. Tzamarias [NESTOR Coll.], “Nestor: A Deep-Sea Neutrino Telescope,” Nucl. Instrum. Meth. A502 (2003) 150, and references therein.

    Google Scholar 

  81. G. Barenboim and J. Lykken, “A model of CPT violation for neutrinos,” Phys. Lett. B 554 (2003) 73 [arXiv:hep-ph/0210411] and references therein.

    Google Scholar 

  82. H. Murayama and T. Yanagida, “LSND, SN1987A, and CPT violation,” Phys. Lett. B 520 (2001) 263 [arXiv:hep-ph/0010178].

    Article  Google Scholar 

  83. A. Strumia, “Interpreting the LSND anomaly: Sterile neutrinos or CPT-violation or.?,” Phys. Lett. B 539 (2002) 91 [arXiv:hep-ph/0201134]; “Neutrino anomalies,” arXiv:hep-ex/0304039.

    Article  Google Scholar 

  84. see for instance: A. Smirnov, Proc. of Neutrino Oscillations in Venice (NO-VE) 2003 and references therein (http://axpd24.pd.infn.it/NO-VE/prog-NOVE.html).

    Google Scholar 

  85. K. Lang [on behalf of MINOS Coll.] “Minos: The Physics Program And The Construction Status,” Int. J. Mod. Phys. A18 (2003) 3857, and references therein.

    Google Scholar 

  86. see talk by: M. Lindner, Proc. of Neutrino Oscillations in Venice (NO-VE) 2003 and references therein (http://axpd24.pd.infn.it/NO-VE/prog-NOVE.html).

    Google Scholar 

  87. V. Barger, D. Marfatia and K. Whisnant, “LSND anomaly from CPT violation in four-neutrino models,” Phys. Lett. B 576 (2003) 303. [arXiv:hep-ph/0308299].

    Article  Google Scholar 

  88. The Second DaΦne Physics Handbook (eds. L. Maiani, G. Pancheri and N. Paver 1995).

    Google Scholar 

  89. R . Adler et al. [CPLEAR Coll.], “Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR,” Phys. Lett. B 364 (1995) 239 [arXiv:hep-ex/9511001].

    Google Scholar 

  90. K. Hagiwara et al. [Particle Data Group Collaboration], “Review of Particle Physics,” Phys. Rev. D 66, (2002) 010001.

    Article  Google Scholar 

  91. H. J. Lipkin, Phys. Rev. 176, (1968) 1715; “Simple Symmetries In Epr Correlated Decays Of Kaon And B Meson Pairs With CP Violation,” Phys. Lett. B 219, (1989); I. Dunietz, J. Hauser and J. L. Rosner, “An Experiment Addressing CP And Cpt Violation In The K0 Anti-K0 System,” Phys. Rev. D 35, (1987) 2166.

    Google Scholar 

  92. V. V. Nesvizhevsky et al., “Measurement of quantum states of neutrons in the Earth';s gravitational field,” Phys. Rev. D 67 (2003) 102002 [arXiv:hep-ph/0306198]; “Reply to: Comment on ';Measurement of quantum states of neutrons in the Earth';s gravitational field,”Phys. Rev. D 68 (2003) 108702.

    Google Scholar 

  93. G. Barenboim and N. E. Mavromatos, “CPT violating decoherence and LSND: A possible window to Planck scale arXiv:hep-ph/0404014.

    Google Scholar 

  94. A. M. Gago, E. M. Santos, W. J. C. Teves and R. Zukanovich Funchal, “A study on quantum decoherence phenomena with three generations of arXiv:hep-ph/0208166.

    Google Scholar 

  95. M. Apollonio et al. [CHOOZ Collaboration], “Limits on neutrino oscillations from the CHOOZ experiment,” Phys. Lett. B 466, 415 (1999) [arXiv:hep-ex/9907037].

    Article  Google Scholar 

  96. S. H. Ahn et al. [K2K Collaboration], “Detection of accelerator produced neutrinos at a distance of 250-km,” Phys. Lett. B 511, 178 (2001) [arXiv:hep-ex/0103001]; M. H. Ahn et al. [K2K Collaboration], “Indications of neutrino oscillation in a 250-km long-baseline experiment,” Phys. Rev. Lett. 90, 041801 (2003) [arXiv:hep-ex/0212007].

    Google Scholar 

  97. K. Eguchi et al. [KamLAND Collaboration], “First results from KamLAND: Evidence for reactor anti-neutrino disappearance,” Phys. Rev. Lett. 90, 021802 (2003) [arXiv:hep-ex/0212021].

    Article  Google Scholar 

  98. B. Armbruster et al. [KARMEN Collaboration], “Upper limits for neutrino oscillations anti-nu/mu → anti-nu/e from muon decay at rest,” Phys. Rev. D 65, 112001 (2002) [arXiv:hep-ex/0203021].

    Google Scholar 

  99. E. D. Zimmerman [BooNE Collaboration], “BooNE has begun,” eConf C0209101, TH05 (2002) [Nucl. Phys. Proc. Suppl. 123, 267 (2003)] [arXiv:hep-ex/0211039].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jurek Kowalski-Glikman Giovanni Amelino-Camelia

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Mavromatos, N. CPT Violation and Decoherence in Quantum Gravity. In: Kowalski-Glikman, J., Amelino-Camelia, G. (eds) Planck Scale Effects in Astrophysics and Cosmology. Lecture Notes in Physics, vol 669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11377306_8

Download citation

Publish with us

Policies and ethics