Skip to main content

Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Abstract

Elevated levels of plasma cholesterol, impaired vascular wall, and presence of inflammatory macrophages are important atherogenic risk factors contributing to atherosclerotic plaque formation and progression. The interventions modulating these risk factors have been found to protect against atherosclerosis development and to decrease atherosclerosis-related cardiovascular disorders. Nutritional approaches involving supplements followed by improving dietary habits and lifestyle have become growingly attractive and acceptable methods used to control atherosclerosis risk factors, mainly high levels of plasma cholesterol. There are a large number of studies that show berberine, a plant bioactive compound, could ameliorate atherosclerosis-related risk factors. In the present literature review, we put together this studies and provide integrated evidence that exhibits berberine has the potential atheroprotective effect through reducing increased levels of plasma cholesterol, particularly low-density lipoprotein (LDL) cholesterol (LDL-C) via LDL receptor (LDLR)-dependent and LDL receptor-independent mechanisms, inhibiting migration and inflammatory activity of macrophages, improving the functionality of endothelial cells via anti-oxidant activities, and suppressing proliferation of vascular smooth muscle cells. In conclusion, berberine can exert inhibitory effects on the atherosclerotic plaque development mainly through LDL-lowering activity and suppressing atherogenic functions of mentioned cells. As the second achievement of this review, among the signaling pathways through which berberine regulates intracellular processes, AMP-activated protein kinase (AMPK) has a central and critical role, showing that enhancing activity of AMPK pathway can be considered as a promising therapeutic approach for atherosclerosis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′-UTR:

3′-untranslated region

ABCA1:

ATP-binding membrane cassette transport protein A1

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

EMMPRIN:

Exhibited a decreased expression of MMPs and extracellular MMP inducer

eNOS:

endothelial nitric oxide synthase

ERK:

Extracellular receptor-activated kinase

HMG-CoA:

3-hydroxy-3-methyl-glutaryl-coenzyme A

HNF1α:

hepatocytes nuclear factor 1α

HUVECs:

Human umbilical vein endothelial cells

IL-6:

Interleukin 6

JNK:

c-Jun N-terminal kinase

LDL:

Low-density lipoprotein

LDL-C:

LDL cholesterol

LDLR:

LDL receptor

LOX 1:

Low-density lipoprotein receptor 1

LXRα:

Liver X receptor α

lysoPC:

Lysophosphatidylcholine

MAP:

Mitogen-activated protein

MCP-1:

Monocyte chemoattractant protein-1

MIP-1α:

Macrophage inflammatory Protein 1 alpha

MMPs:

Matrix metalloproteinases

NADPH:

Nicotinamide adenine dinucleotide phosphate

NAFLD:

Non-alcohol fatty liver disease

NOD:

Nonobese diabetic

PCSK9:

Proprotein convertase subtilisin kexin 9

PCSK9:

Proprotein convertase subtilisin/kexin type 9

ROS:

Reactive oxygen species

SR-BI:

Scavenger receptor class B type I

SREBP2:

sterol regulatory element-binding protein 2

TG:

Triglyceride

VCAM-1:

Vascular cell adhesion molecule-1

VSMCs:

Vascular smooth muscle cells

References

  • Abidi P, Zhou Y, Jiang J-D, Liu J (2005) Extracellular signal-regulated kinase–dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine. Arterioscler Thromb Vasc Biol 25(10):2170–2176

    CAS  PubMed  Google Scholar 

  • Abidi P, Chen W, Kraemer FB, Li H, Liu J (2006) The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms. J Lipid Res 47(10):2134–2147

    CAS  PubMed  Google Scholar 

  • Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156

    CAS  PubMed  Google Scholar 

  • Affuso F, Ruvolo A, Micillo F, Saccà L, Fazio S (2010) Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr Metab Cardiovasc Dis 20(9):656–661

    CAS  PubMed  Google Scholar 

  • Affuso F, Mercurio V, Ruvolo A, Pirozzi C, Micillo F, Carlomagno G et al (2012) A nutraceutical combination improves insulin sensitivity in patients with metabolic syndrome. World J Cardiol 4(3):77

    PubMed  PubMed Central  Google Scholar 

  • Al-Koussa H, El Atat O, Jaafar L, Tashjian H, El-Sibai M (2020) The role of Rho GTPases in motility and invasion of glioblastoma cells. Anal Cell Pathol 2020

    Google Scholar 

  • Ayati SH, Fazeli B, Momtazi-Borojeni AA, Cicero AFG, Pirro M, Sahebkar A (2017) Regulatory effects of berberine on microRNome in cancer and other conditions. Crit Rev Oncol Hematol 116:147–158

    PubMed  Google Scholar 

  • Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z (2019) Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 1:18

    Google Scholar 

  • Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertuccioli A, Moricoli S, Amatori S, Rocchi MBL, Vici G, Sisti D (2019) Berberine and dyslipidemia: different applications and biopharmaceutical formulations without statin-like molecules—a meta-analysis. J Med Food 23(2):101–113

    PubMed  Google Scholar 

  • Briand F, Thieblemont Q, Muzotte E, Sulpice T (2013) Upregulating reverse cholesterol transport with cholesteryl ester transfer protein inhibition requires combination with the LDL-lowering drug berberine in dyslipidemic hamsters. Arterioscler Thromb Vasc Biol 33(1):13–23

    CAS  PubMed  Google Scholar 

  • Brusq J-M, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M (2006) Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res 47(6):1281–1288

    CAS  PubMed  Google Scholar 

  • Cameron J, Ranheim T, Kulseth MA, Leren TP, Berge KE (2008) Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis 201(2):266–273

    CAS  PubMed  Google Scholar 

  • Carr S, Farb A, Pearce WH, Virmani R, Yao JST (1996) Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J Vasc Surg 23(5):755–766

    CAS  PubMed  Google Scholar 

  • Chang XX, Yan HM, Fei J, Jiang MH, Zhu HG, Lu DR, Gao X (2010) Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats. J Lipid Res 51(9):2504–2515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang X-x, Yan H-m, Xu Q, Xia M-f, Bian H, Zhu T-f, Gao X (2012) The effects of berberine on hyperhomocysteinemia and hyperlipidemia in rats fed with a long-term high-fat diet. Lipids Health Dis 11(1):86

    PubMed  PubMed Central  Google Scholar 

  • Chen FL, Yang ZH, Liu Y, Li LX, Liang WC, Wang XC et al (2008) Berberine inhibits the expression of TNFα, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARγ pathway. Endocrine 33(3):331–337

    CAS  PubMed  Google Scholar 

  • Chen J, Cao J, Fang L, Liu B, Zhou Q, Sun Y et al (2014) Berberine derivatives reduce atherosclerotic plaque size and vulnerability in apoE−/− mice. J Transl Med 12(1):326

    PubMed  PubMed Central  Google Scholar 

  • Cheng WE, Chang MY, Wei JY, Chen YJ, Maa MC, Leu TH (2015) Berberine reduces toll-like receptor-mediated macrophage migration by suppression of Src enhancement. Eur J Pharmacol 757:1–10. https://doi.org/10.1016/j.ejphar.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  • Chi L, Peng L, Hu X, Pan N, Zhang Y (2014) Berberine combined with atorvastatin downregulates LOX1 expression through the ET1 receptor in monocyte/macrophages. Int J Mol Med 34(1):283–290. https://doi.org/10.3892/ijmm.2014.1748

    Article  CAS  PubMed  Google Scholar 

  • Chueh W-H, Lin J-Y (2011) Berberine, an isoquinoline alkaloid in herbal plants, protects pancreatic islets and serum lipids in nonobese diabetic mice. J Agric Food Chem 59(14):8021–8027

    CAS  PubMed  Google Scholar 

  • Cianci A, Cicero AFG, Colacurci N, Matarazzo MG, Leo D, Vincenzo (2012) Activity of isoflavones and berberine on vasomotor symptoms and lipid profile in menopausal women. Gynecol Endocrinol 28(9):699–702

    CAS  PubMed  Google Scholar 

  • Cicero AFG, Rovati LC, Setnikar I (2007) Eulipidemic effects of berberine administered alone or in combination with other natural cholesterol-lowering agents. Arzneimittelforschung 57(01):26–30

    CAS  PubMed  Google Scholar 

  • Cicero AF, Fogacci F, Bove M, Giovannini M, Veronesi M, Borghi C (2019) Short-term effects of dry extracts of artichokeand berberis in hypercholesterolemic patients without cardiovascular disease. Am J Cardiol 123(4):588–591

    PubMed  Google Scholar 

  • Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL (2000) P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E–deficient mice. J Exp Med 191(1):189–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Addato S, Scandiani L, Mombelli G, Focanti F, Pelacchi F, Salvatori E et al (2017) Effect of a food supplement containing berberine, monacolin K, hydroxytyrosol and coenzyme Q10 on lipid levels: a randomized, double-blind, placebo controlled study. Drug Des Devel Ther 11:1585

    PubMed  PubMed Central  Google Scholar 

  • Derosa G, D’Angelo A, Bonaventura A, Bianchi L, Romano D, Maffioli P (2013) Effects of berberine on lipid profile in subjects with low cardiovascular risk. Expert Opin Biol Ther 13(4):475–482

    CAS  PubMed  Google Scholar 

  • Doggrell SA (2005) Berberine--a novel approach to cholesterol lowering. Expert Opin Investig Drugs 14(5):683–685. https://doi.org/10.1517/13543784.14.5.683

    Article  CAS  PubMed  Google Scholar 

  • Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD (1998) The combined role of P-and E-selectins in atherosclerosis. J Clin Invest 102(1):145–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhao Y, Zhao L, Lu F (2013) The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med 79(06):437–446

    CAS  PubMed  Google Scholar 

  • Dong B, Li H, Singh AB, Cao A, Liu J (2015) Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1alpha protein expression through the ubiquitin-proteasome degradation pathway. J Biol Chem 290(7):4047–4058. https://doi.org/10.1074/jbc.M114.597229

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Wang J, Hou J, Lin C, Bensoussan A, Chang D et al (2015) Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med 13:92–92. https://doi.org/10.1186/s12967-015-0450-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg T, Wieland LS, Miller LE, Munir K, Pollin TI, Shuldiner AR et al (2019) Polyherbal dietary supplementation for prediabetic adults: study protocol for a randomized controlled trial. Trials 20(1):1–13

    Google Scholar 

  • Feng W-w, Kuang S-y, Tu C, Ma Z-j, Pang J-y, Wang Y-h et al (2018) Natural products berberine and curcumin exhibited better ameliorative effects on rats with non-alcohol fatty liver disease than lovastatin. Biomed Pharmacother 99:325–333

    CAS  PubMed  Google Scholar 

  • Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38(32):2459–2472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH, Shaw PE (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14(5):951–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goetze S, Xi X-P, Graf K, Fleck E, Hsueh WA, Law RE (1999) Troglitazone inhibits angiotensin II-induced extracellular signal-regulated kinase 1/2 nuclear translocation and activation in vascular smooth muscle cells. FEBS Lett 452(3):277–282

    CAS  PubMed  Google Scholar 

  • Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116(1):59–69

    CAS  PubMed  Google Scholar 

  • Guan S, Wang B, Li W, Guan J, Fang X (2010) Effects of berberine on expression of LOX-1 and SR-BI in human macrophage-derived foam cells induced by ox-LDL. Am J Chin Med 38(06):1161–1169

    CAS  PubMed  Google Scholar 

  • Guarino G, Strollo F, Carbone L, Della TC, Letizia M, Marino G, Gentile S (2017) Bioimpedance analysis, metabolic effects and safety of the association Berberis aristata/Bilybum marianum: a 52-week double-blind, placebo-controlled study in obese patients with type 2 diabetes. J Biol Regul Homeost Agents 31(2):495–502

    CAS  PubMed  Google Scholar 

  • Guillemot L, Levy A, Raymondjean M, Rothhut B (2001) Angiotensin II-induced transcriptional activation of the cyclin D1 gene is mediated by Egr-1 in CHO-AT1A cells. J Biol Chem 276(42):39394–39403

    CAS  PubMed  Google Scholar 

  • Guo Y, Zhang Y, Huang W, Selwyn FP, Klaassen CD (2016) Dose-response effect of berberine on bile acid profile and gut microbiota in mice. BMC Complement Altern Med 16(1):394. https://doi.org/10.1186/s12906-016-1367-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha S-H, Choi H, Park J-Y, Abekura F, Lee Y-C, Kim J-R, Kim C-H (2020) Mycobacterium tuberculosis–secreted protein, ESAT-6, inhibits lipopolysaccharide-induced MMP-9 expression and inflammation through NF-κB and MAPK signaling in RAW 264.7 macrophage cells. Inflammation 43(1):54–65

    CAS  PubMed  Google Scholar 

  • Havis E, Duprez D (2020) Egr1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. Int J Mol Sci 21(5):1664

    CAS  PubMed Central  Google Scholar 

  • He K, Kou S, Zou Z, Hu Y, Feng M, Han B et al (2016) Hypolipidemic effects of alkaloids from Rhizoma Coptidis in diet-induced hyperlipidemic hamsters. Planta Med 82(08):690–697

    CAS  PubMed  Google Scholar 

  • Hu Y, Davies GE (2010) Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia 81(5):358–366

    CAS  PubMed  Google Scholar 

  • Hu Y, Ehli EA, Kittelsrud J, Ronan PJ, Munger K, Downey T et al (2012) Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine 19(10):861–867

    CAS  PubMed  Google Scholar 

  • Huang Z, Wang L, Meng S, Wang Y, Chen T, Wang C (2011) Berberine reduces both MMP-9 and EMMPRIN expression through prevention of p38 pathway activation in PMA-induced macrophages. Int J Cardiol 146(2):153–158

    PubMed  Google Scholar 

  • Huang Z, Meng S, Wang L, Wang Y, Chen T, Wang C (2012) Suppression of oxLDL-induced MMP-9 and EMMPRIN expression by berberine via inhibition of NF-kappaB activation in human THP-1 macrophages. Anat Rec 295(1):78–86. https://doi.org/10.1002/ar.21489

    Article  CAS  Google Scholar 

  • Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T et al (2005) Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res 97(8):837–844

    CAS  PubMed  Google Scholar 

  • Imanshahidi M, Hosseinzadeh H (2008) Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 22(8):999–1012

    CAS  PubMed  Google Scholar 

  • Jia X, Chen Y, Zidichouski J, Zhang J, Sun C, Wang Y (2008) Co-administration of berberine and plant stanols synergistically reduces plasma cholesterol in rats. Atherosclerosis 201(1):101–107

    CAS  PubMed  Google Scholar 

  • Johnston TP, Korolenko TA, Pirro M, Sahebkar A (2017) Preventing cardiovascular heart disease: promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res 120:219–225

    CAS  PubMed  Google Scholar 

  • Ju J, Li J, Lin Q, Xu H (2018) Efficacy and safety of berberine for dyslipidaemias: a systematic review and meta-analysis of randomized clinical trials. Phytomedicine 50:25–34

    CAS  PubMed  Google Scholar 

  • Khachigian LM, Williams AJ, Collins T (1995) Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J Biol Chem 270(46):27679–27686

    CAS  PubMed  Google Scholar 

  • Khachigian LM, Lindner V, Williams AJ, Collins T (1996) Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271(5254):1427–1431

    CAS  PubMed  Google Scholar 

  • Khachigian LM, Collins T (1997) Inducible expression of Egr-1–dependent genes: a paradigm of transcriptional activation in vascular endothelium. Circ Res 81(4):457–461

    CAS  PubMed  Google Scholar 

  • Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K et al (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364(2):127–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kawamura M, Wanibuchi H, Ohta K, Hamaguchi A, Omura T et al (1995) Angiotensin II type 1 receptor blockade inhibits the expression of immediate-early genes and fibronectin in rat injured artery. Circulation 92(1):88–95

    CAS  PubMed  Google Scholar 

  • Kim S, Izumi Y, Yano M, Hamaguchi A, Miura K, Yamanaka S et al (1998) Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery. Circulation 97(17):1731–1737

    CAS  PubMed  Google Scholar 

  • Kim WS, Lee YS, Cha SH, Jeong HW, Choe SS, Lee M-R et al (2009) Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am J Physiol Endocrinol Metab 296(4):E812–E819

    CAS  PubMed  Google Scholar 

  • Kim M, Kim T-W, Kim C-J, Shin M-S, Hong M, Park H-S, Park S-S (2019) Berberine ameliorates brain inflammation in poloxamer 407-induced hyperlipidemic rats. Int Neurourol J 23(Suppl 2):S102

    PubMed  PubMed Central  Google Scholar 

  • Ko YJ, Lee J-S, Park BC, Shin HM, Kim J-A (2007) Inhibitory effects of Zoagumhwan water extract and berberine on angiotensin II-induced monocyte chemoattractant protein (MCP)-1 expression and monocyte adhesion to endothelial cells. Vasc Pharmacol 47(2–3):189–196

    CAS  Google Scholar 

  • Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C et al (2004) Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10(12):1344–1351

    CAS  PubMed  Google Scholar 

  • Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C et al (2006) Berberine is a promising novel cholesterol-lowering drug working through a unique mechanism distinct from statins. In: Paper presented at the Atherosclerosis Supplements

    Google Scholar 

  • Kong W-J, Wei J, Zuo Z-Y, Wang Y-M, Song D-Q, You X-F et al (2008) Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism 57(8):1029–1037

    CAS  PubMed  Google Scholar 

  • Koppen LM, Whitaker A, Rosene A, Beckett RD (2017) Efficacy of berberine alone and in combination for the treatment of hyperlipidemia: a systematic review. J Evid Based Complementary Altern Med 22(4):956–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kou S, Han B, Wang Y, Huang T, He K, Han Y et al (2016) Synergetic cholesterol-lowering effects of main alkaloids from Rhizoma Coptidis in HepG2 cells and hypercholesterolemia hamsters. Life Sci 151:50–60

    CAS  PubMed  Google Scholar 

  • Kou JY, Li Y, Zhong ZY, Jiang YQ, Li XS, Han XB et al (2017) Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis 8(1):e2558–e2558. https://doi.org/10.1038/cddis.2016.354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama H, Olson NE, Dastvan FF, Reidy MA (1998) Cell replication in the arterial wall: activation of signaling pathway following in vivo injury. Circ Res 82(6):713–721

    CAS  PubMed  Google Scholar 

  • Kruth HS (2013) Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. Curr Pharm Des 19(33):5865–5872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TS, Pan CC, Peng CC, Kou YR, Chen CY, Ching LC et al (2010) Anti-atherogenic effect of berberine on LXRalpha-ABCA1-dependent cholesterol efflux in macrophages. J Cell Biochem 111(1):104–110. https://doi.org/10.1002/jcb.22667

    Article  CAS  PubMed  Google Scholar 

  • Li Y-H, Yang P, Kong W-J, Wang Y-X, Hu C-Q, Zuo Z-Y et al (2008) Berberine Analogues as a novel class of the low-density-lipoprotein receptor up-regulators: synthesis, structure− activity relationships, and cholesterol-lowering efficacy. J Med Chem 52(2):492–501

    Google Scholar 

  • Li H, Chen W, Zhou Y, Abidi P, Sharpe O, Robinson WH et al (2009a) Identification of mRNA binding proteins that regulate the stability of LDL receptor mRNA through AU-rich elements. J Lipid Res 50(5):820–831. https://doi.org/10.1194/jlr.M800375-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Dong B, Park SW, Lee HS, Chen W, Liu J (2009b) Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem 284(42):28885–28895. https://doi.org/10.1074/jbc.M109.052407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G-S, Liu X-H, Zhu H, Huang L, Liu Y-L, Ma C-M, Qin C (2011) Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver X receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters. Biol Pharm Bull 34(5):644–654

    CAS  PubMed  Google Scholar 

  • Li Z, Geng Y-N, Jiang J-D, Kong W-J (2014) Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med 2014:289264

    PubMed  PubMed Central  Google Scholar 

  • Li X-Y, Zhao Z-X, Huang M, Feng R, He C-Y, Ma C et al (2015) Effect of Berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters. J Transl Med 13(1):278

    PubMed  PubMed Central  Google Scholar 

  • Liang K-W, Ting C-T, Yin S-C, Chen Y-T, Lin S-J, Liao JK, Hsu S-L (2006) Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol 71(6):806–817. https://doi.org/10.1016/j.bcp.2005.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang K-W, Yin S-C, Ting C-T, Lin S-J, Hsueh C-M, Chen C-Y, Hsu S-L (2008) Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharmacol 590(1):343–354. https://doi.org/10.1016/j.ejphar.2008.06.034

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Sun X, Peng L, Jiang W, Li W, Yuan H, Cai J (2020) Angiotensin II-Induced vascular remodeling and hypertension involves cathepsin L/V-MEK/ERK mediated mechanism. Int J Cardiol 298:98–106

    PubMed  Google Scholar 

  • Maiuri MC, Grassia G, Platt AM, Carnuccio R, Ialenti A, Maffia P (2013) Macrophage autophagy in atherosclerosis. Mediat Inflamm 2013:584715

    Google Scholar 

  • Marazzi G, Cacciotti L, Pelliccia F, Iaia L, Volterrani M, Caminiti G et al (2011) Long-term effects of nutraceuticals (berberine, red yeast rice, policosanol) in elderly hypercholesterolemic patients. Adv Ther 28(12):1105–1113

    CAS  PubMed  Google Scholar 

  • Momtazi AA, Banach M, Pirro M, Katsiki N, Sahebkar A (2017) Regulation of PCSK9 by nutraceuticals. Pharmacol Res 120:157–169

    CAS  PubMed  Google Scholar 

  • Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mordi I, Tzemos N (2014) Is reversal of endothelial dysfunction still an attractive target in modern cardiology? World J Cardiol 6(8):824

    PubMed  PubMed Central  Google Scholar 

  • Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 98(12):845–856

    CAS  PubMed  Google Scholar 

  • Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13(6):655–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Rubio KG, González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA, Espinel-Bermúdez MC (2013) Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab Syndr Relat Disord 11(5):366–369

    PubMed  Google Scholar 

  • Perrucci GL, Rurali E, Corlianò M, Balzo M, Piccoli M, Moschetta D et al (2020) Cyclophilin A/EMMPRIN axis is involved in pro-fibrotic processes associated with thoracic aortic aneurysm of marfan syndrome patients. Cell 9(1):154

    CAS  Google Scholar 

  • Pisciotta L, Bellocchio A, Bertolini S (2012) Nutraceutical pill containing berberine versus ezetimibe on plasma lipid pattern in hypercholesterolemic subjects and its additive effect in patients with familial hypercholesterolemia on stable cholesterol-lowering treatment. Lipids Health Dis 11(1):123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y-W, Schmidt RJ, Zhang Y, Chu S, Lin A, Wang H et al (2007) Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 48(7):1488–1498

    CAS  PubMed  Google Scholar 

  • Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S et al (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15(4):534–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F et al (2017) Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med 376(16):1527–1539

    CAS  PubMed  Google Scholar 

  • Roostalu U, Wong JKF (2018) Arterial smooth muscle dynamics in development and repair. Dev Biol 435(2):109–121

    CAS  PubMed  Google Scholar 

  • Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA et al (2017) FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376(18):1713–1722

    CAS  PubMed  Google Scholar 

  • Sahebkar A, Watts GF (2013) New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther 27(6):559–567. https://doi.org/10.1007/s10557-013-6479-4

    Article  CAS  PubMed  Google Scholar 

  • Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW et al (2004) Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J 25(12):1077–1082

    PubMed  Google Scholar 

  • Schmidt R, Redecke V, Breitfeld Y, Wantia N, Miethke T, Massberg S et al (2006) EMMPRIN (CD 147) is a central activator of extracellular matrix degradation by Chlamydia pneumoniae-infected monocytes. Thromb Haemost 95(01):151–158

    CAS  PubMed  Google Scholar 

  • Schrijvers DM, Meyer D, Guido RY, Martinet W (2011) Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol 31(12):2787–2791

    CAS  PubMed  Google Scholar 

  • Shih PT, Brennan M-L, Vora DK, Territo MC, Strahl D, Elices MJ et al (1999) Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. Circ Res 84(3):345–351

    CAS  PubMed  Google Scholar 

  • Silverman ES, Khachigian LM, Lindner V, Williams AJ, Collins T (1997) Inducible PDGF A-chain transcription in smooth muscle cells is mediated by Egr-1 displacement of Sp1 and Sp3. Am J Phys Heart Circ Phys 273(3):H1415–H1426

    CAS  Google Scholar 

  • Singh AB, Liu J (2019) Berberine decreases plasma triglyceride levels and upregulates hepatic TRIB1 in LDLR wild type mice and in LDLR deficient mice. Sci Rep 9(1):1–14

    Google Scholar 

  • Singh IP, Mahajan S (2013) Berberine and its derivatives: a patent review (2009–2012). Expert Opin Ther Pat 23(2):215–231

    CAS  PubMed  Google Scholar 

  • Singh A, Duggal S, Kaur N, Singh J (2010) Berberine: alkaloid with wide spectrum of pharmacological activities. J Nat Prod 3:64–75

    CAS  Google Scholar 

  • Singh AB, Li H, Kan CF, Dong B, Nicolls MR, Liu J (2014) The critical role of mRNA destabilizing protein heterogeneous nuclear ribonucleoprotein d in 3′ untranslated region-mediated decay of low-density lipoprotein receptor mRNA in liver tissue. Arterioscler Thromb Vasc Biol 34(1):8–16. https://doi.org/10.1161/atvbaha.112.301131

    Article  CAS  PubMed  Google Scholar 

  • Sola R, Valls R-M, Puzo J, Calabuig J-R, Brea A, Pedret A et al (2014) Effects of poly-bioactive compounds on lipid profile and body weight in a moderately hypercholesterolemic population with low cardiovascular disease risk: a multicenter randomized trial. PLoS One 9(8):e101978

    PubMed  PubMed Central  Google Scholar 

  • Spigoni V, Aldigeri R, Antonini M, Micheli M, Fantuzzi F, Fratter A et al (2017) Effects of a new nutraceutical formulation (berberine, red yeast rice and chitosan) on non-HDL cholesterol levels in individuals with dyslipidemia: results from a randomized, double blind, placebo-controlled study. Int J Mol Sci 18(7):1498

    PubMed Central  Google Scholar 

  • Srivastava S, Srivastava M, Misra A, Pandey G, Rawat AKS (2015) A review on biological and chemical diversity in Berberis (Berberidaceae). EXCLI J 14:247

    PubMed  PubMed Central  Google Scholar 

  • Trimarco B, Benvenuti C, Rozza F, Cimmino CS, Giudice R, Crispo S (2011) Clinical evidence of efficacy of red yeast rice and berberine in a large controlled study versus diet. Mediterr J Nutr Metab 4(2):133–139

    Google Scholar 

  • Toth PP, Patti AM, Giglio RV, Nikolic D, Castellino G, Rizzo M, Banach M (2018) Management of statin intolerance in 2018: still more questions than answers. Am J Cardiovasc Drugs 18(3):157–173

    PubMed  PubMed Central  Google Scholar 

  • Umans-Eckenhausen MAW, Sijbrands EJG, Kastelein JJP, Defesche JC (2002) Low-density lipoprotein receptor gene mutations and cardiovascular risk in a large genetic cascade screening population. Circulation 106(24):3031–3036

    PubMed  Google Scholar 

  • Wang Y, Zidichouski JA (2018) Update on the benefits and mechanisms of action of the bioactive vegetal alkaloid berberine on lipid metabolism and homeostasis. Cholesterol 2018:7173920

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang Y, Lam KSL, Li Y, Wong WT, Ye H et al (2009) Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res 82(3):484–492

    CAS  PubMed  Google Scholar 

  • Wang Y, Jia X, Ghanam K, Beaurepaire C, Zidichouski J, Miller L (2010) Berberine and plant stanols synergistically inhibit cholesterol absorption in hamsters. Atherosclerosis 209(1):111–117. https://doi.org/10.1016/j.atherosclerosis.2009.08.050

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Shi L, Yin H, Zhou Q (2011) Study on effect of berberine on modulating lipid and CPT IA gene expression. Zhongguo Zhong Yao Za Zhi 36(19):2715–2718

    Google Scholar 

  • Wang FL, Tang LQ, Yang F, Zhu LN, Cai M, Wei W (2013) Renoprotective effects of berberine and its possible molecular mechanisms in combination of high-fat diet and low-dose streptozotocin-induced diabetic rats. Mol Biol Rep 40(3):2405–2418

    CAS  PubMed  Google Scholar 

  • Wang Y, Yi X, Ghanam K, Zhang S, Zhao T, Zhu X (2014) Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism 63(9):1167–1177

    CAS  PubMed  Google Scholar 

  • Wang L, Jiang Y, Song X, Guo C, Zhu F, Wang X et al (2016a) Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis 7(1):e2055–e2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Peng LY, Wei GH, Ge H (2016b) Therapeutic effects of berberine capsule on patients with mild hyperlipidemia. Zhongguo Zhong Xi Yi Jie He Za Zhi 36(6):681–684

    PubMed  Google Scholar 

  • Ward NC, Watts GF, Eckel RH (2019) Statin toxicity: mechanistic insights and clinical implications. Circ Res 124(2):328–350

    CAS  PubMed  Google Scholar 

  • Wu N, Sarna LK, Siow YL, Karmin O (2010) Regulation of hepatic cholesterol biosynthesis by berberine during hyperhomocysteinemia. Am J Phys Regul Integr Comp Phys 300(3):R635–R643

    Google Scholar 

  • Wu YH, Chuang SY, Hong WC, Lai YJ, Chang GJ, Pang JHS (2012) Berberine reduces leukocyte adhesion to LPS-stimulated endothelial cells and VCAM-1 expression both in vivo and in vitro. Int J Immunopathol Pharmacol 25(3):741–750

    CAS  PubMed  Google Scholar 

  • Wu M, Yang S, Wang S, Cao Y, Zhao R, Li X et al (2020) Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE−/− mice. Front Pharmacol 11:223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H-B, Sun Z-L, Zhang H-B, Zhang D-S (2012) Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. Pharmacol Rep 64(4):889–895

    CAS  PubMed  Google Scholar 

  • Xu S, Weng J (2020) Familial hypercholesterolemia and atherosclerosis: animal models and therapeutic advances. Trends Endocrinol Metab 31(5):331–333

    Google Scholar 

  • Yan Y-X, Nakagawa H, Lee M-H, Rustgi AK (1997) Transforming growth factor-α enhances cyclin D1 transcription through the binding of early growth response protein to a cis-regulatory element in the cyclin D1 promoter. J Biol Chem 272(52):33181–33190

    CAS  PubMed  Google Scholar 

  • Yang X-J, Liu F, Feng N, Ding X-S, Chen Y, Zhu S-X et al (2020) Berberine attenuates cholesterol accumulation in macrophage foam cells by suppressing AP-1 activity and activation of the Nrf2/HO-1 pathway. J Cardiovasc Pharmacol 75(1):45–53

    CAS  PubMed  Google Scholar 

  • Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57(5):712–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuyun MF, Ng LL, Ng GA (2018) Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5-methyltetrahydrofolate in cardiovascular disease. Where are we with therapy? Microvasc Res 119:7–12. https://doi.org/10.1016/j.mvr.2018.03.012

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Kruys V, Huez G, Gueydan C (2002) AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Portland Press, London

    Google Scholar 

  • Zhang W, Xu Y-c, Guo F-j, Meng Y, Li M-l (2008) Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin Med J 121(21):2124

    CAS  PubMed  Google Scholar 

  • Zhang H, Wei J, Xue R, Wu J-D, Zhao W, Wang Z-Z et al (2010) Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 59(2):285–292

    PubMed  Google Scholar 

  • Zhang Q, Xiao X, Feng K, Wang T, Li W, Yuan T et al (2011) Berberine moderates glucose and lipid metabolism through multipathway mechanism. Evid Based Complement Alternat Med 2011:924851

    PubMed  Google Scholar 

  • Zhang M, Wang CM, Li J, Meng ZJ, Wei SN, Li J et al (2013) Berberine protects against palmitate-induced endothelial dysfunction: involvements of upregulation of AMPK and eNOS and downregulation of NOX4. Mediat Inflamm 2013:260464. https://doi.org/10.1155/2013/260464

    Article  CAS  Google Scholar 

  • Zhang X-J, Deng Y-X, Shi Q-Z, He M-Y, Chen B, Qiu X-M (2014) Hypolipidemic effect of the Chinese polyherbal Huanglian Jiedu decoction in type 2 diabetic rats and its possible mechanism. Phytomedicine 21(5):615–623

    CAS  PubMed  Google Scholar 

  • Zhang L-S, Zhang J-H, Feng R, Jin X-Y, Yang F-W, Ji Z-C et al (2019) Efficacy and safety of berberine alone or combined with statins for the treatment of hyperlipidemia: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Chin Med 47(04):751–767

    CAS  PubMed  Google Scholar 

  • Zhang L, Shao J, Zhou Y, Chen H, Qi H, Wang Y et al (2018) Inhibition of PDGF-BB-induced proliferation and migration in VSMCs by proanthocyanidin A2: involvement of KDR and Jak-2/STAT-3/cPLA2 signaling pathways. Biomed Pharmacother 98:847–855

    CAS  PubMed  Google Scholar 

  • Zhou X, Ren F, Wei H, Liu L, Shen T, Xu S et al (2017) Combination of berberine and evodiamine inhibits intestinal cholesterol absorption in high fat diet induced hyperlipidemic rats. Lipids Health Dis 16(1):239

    PubMed  PubMed Central  Google Scholar 

  • Zhu X, Yang J, Zhu W, Yin X, Yang B, Wei Y, Guo X (2018) Combination of berberine with resveratrol improves the lipid-lowering efficacy. Int J Mol Sci 19(12):3903

    PubMed Central  Google Scholar 

  • Zimetti F, Adorni MP, Ronda N, Gatti R, Bernini F, Favari E (2015) The natural compound berberine positively affects macrophage functions involved in atherogenesis. Nutr Metab Cardiovasc Dis 25(2):195–201. https://doi.org/10.1016/j.numecd.2014.08.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the cooperation of Departments of Medical Immunology and Medical Biotechnology of Mashhad University of Medical Sciences.

Conflicts of Interest

The authors declare that there are no conflicts of interest and financial support for the present review article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Banafsheh Nikfar or Amir Abbas Momtazi-Borojeni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatahian, A., Haftcheshmeh, S.M., Azhdari, S., Farshchi, H.K., Nikfar, B., Momtazi-Borojeni, A.A. (2020). Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology . Reviews of Physiology, Biochemistry and Pharmacology, vol 178. Springer, Cham. https://doi.org/10.1007/112_2020_42

Download citation

Publish with us

Policies and ethics