Skip to main content

The Secretion and Action of Brush Border Enzymes in the Mammalian Small Intestine

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 168))

Abstract

Microvilli are conventionally regarded as an extension of the small intestinal absorptive surface, but they are also, as latterly discovered, a launching pad for brush border digestive enzymes. Recent work has demonstrated that motor elements of the microvillus cytoskeleton operate to displace the apical membrane toward the apex of the microvillus, where it vesiculates and is shed into the periapical space. Catalytically active brush border digestive enzymes remain incorporated within the membranes of these vesicles, which shifts the site of BB digestion from the surface of the enterocyte to the periapical space. This process enables nutrient hydrolysis to occur adjacent to the membrane in a pre-absorptive step. The characterization of BB digestive enzymes is influenced by the way in which these enzymes are anchored to the apical membranes of microvilli, their subsequent shedding in membrane vesicles, and their differing susceptibilities to cleavage from the component membranes. In addition, the presence of active intracellular components of these enzymes complicates their quantitative assay and the elucidation of their dynamics. This review summarizes the ontogeny and regulation of BB digestive enzymes and what is known of their kinetics and their action in the peripheral and axial regions of the small intestinal lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

ALP:

Alkaline phosphatase

APA:

Aminopeptidase A

APN:

Aminopeptidase N

APP:

Aminopeptidase P

AS:

Alkaline sphingomyelinase

BB:

Brush border

BBMV:

Brush border membrane vesicle

BSAL:

Bile salt-activated lipase

CPA:

Carboxypeptidase A

CPB:

Carboxypeptidase B

DP1:

Dipeptidase 1

DPPIV:

Dipeptidylpeptidase IV

GGT:

γ-Glutamyl transpeptidase

GPI:

Glycophosphatidylinositol

LPH:

Lactase–phlorizin hydrolase

MEP:

Meprin A subunit β

MGAM:

Maltase–glucoamylase

NC:

Neutral ceramidase

NEP:

Neprilysin

NTC:

Sodium taurocholate

PLA2:

Phospholipase A2

PLB1:

Phospholipase B1

PTL:

Pancreatic triacylglycerol lipase

PTL:

Pancreatic triacylglycerol lipase

RER:

Rough endoplasmic reticulum

SC:

Soluble cytosolic

SI:

Sucrase–isomaltase

References

  • Ahnen DJ, Santiago NA, Cezard JP, Gray GM (1982) Intestinal aminooligopeptidase – in vivo synthesis on intracellular membranes of the rat jejunum. J Biol Chem 257(20):2129–2135

    Google Scholar 

  • Akiba Y, Mizumori M, Guth PH, Engel E, Kaunitz JD (2007) Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats. Am J Physiol 293(6):G1223–G1233. doi:10.1152/ajpgi.00313.2007

    CAS  Google Scholar 

  • Amidon GL, Lee H (1994) Absorption of peptide and peptidomimetic drugs. Annu Rev Pharmacol Toxicol 34(1):321–341

    Article  CAS  PubMed  Google Scholar 

  • Anderson LE, Walsh KA, Neurath H (1977) Bovine enterokinase. Purification, specificity, and some molecular properties. Biochemistry 16(15):3354–3360

    Article  CAS  PubMed  Google Scholar 

  • Anderson R, Beyler S, Mack S, Zaneveld L (1981) Characterization of a high-molecular-weight form of human acrosin. Comparison with human pancreatic trypsin. Biochem J 199:307–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asp NG, Dahlqvist A (1968) Rat small-intestinal β-galactosidases. Kinetic studies with three separated fractions. Biochem J 110(1):143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Auricchio S, Dahlqvist A, Semenza G (1963) Solubilization of the human intestinal disaccharidases. Biochim Biophys Acta 73(4):582–587. doi:10.1016/0926-6569(63)90178-0

    Article  CAS  PubMed  Google Scholar 

  • Auricchio S, Semenza G, Rubino A (1965) Multiplicity of human intestinal disaccharidases II. Characterization of the individual maltases. Biochim Biophys Acta 96(3):498–507. doi:10.1016/0005-2787(65)90566-6

    Article  CAS  PubMed  Google Scholar 

  • Bagi K, Simon LM, Szajáni B (1997) Immobilization and characterization of porcine pancreas lipase. Enzyme Microb Technol 20(7):531–535

    Article  CAS  Google Scholar 

  • Bai JF, Amidon G (1992) Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery. Pharm Res 9(8):969–978. doi:10.1023/a:1015885823793

    Article  CAS  PubMed  Google Scholar 

  • Bargetzi J-P, Kumar KS, Cox DJ, Walsh KA, Neurath H (1963) The amino acid composition of bovine pancreatic carboxypeptidase A*. Biochemistry 2(6):1468–1474

    Article  CAS  PubMed  Google Scholar 

  • Barinka C, Rinnová M, Šácha P, Rojas C, Majer P, Slusher BS, Konvalinka J (2002) Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem 80(3):477–487

    Article  CAS  PubMed  Google Scholar 

  • Bartles JR, Zheng L, Li A, Wierda A, Chen B (1998) Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J Cell Biol 143(1):107–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basson MD, Di Li G, Hong F, Han O, Sumpio BE (1996) Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J Cell Physiol 168(2):476–488. doi:10.1002/(sici)1097-4652(199608)168:2<476::aid-jcp26>3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  • Bauer E, Jakob S, Mosenthin R (2005) Principles of physiology of lipid digestion. Asian Aust J Anim Sci 18(2):282–295

    Article  CAS  Google Scholar 

  • Beaulieu JF, Nichols B, Quaroni A (1989) Posttranslational regulation of sucrase-isomaltase expression in intestinal crypt and villus cells. J Biol Chem 264(33):20000–20011

    CAS  PubMed  Google Scholar 

  • Beck IT (1973) The role of pancreatic enzymes in digestion. Am J Clin Nutr 26(3):311–325

    CAS  PubMed  Google Scholar 

  • Becker T, Rapp W (1979) Characterization of human pepsin I obtained from purified gastric pepsinogen I. Klin Wochenschr 57(14):711–718

    Article  CAS  PubMed  Google Scholar 

  • Beiboer SHW, Franken PA, Cox RC, Verheij HM (1995) An extended binding pocket determines the polar head group specificity of porcine pancreatic phospholipase A2. Eur J Biochem 231(3):747–753

    Article  CAS  PubMed  Google Scholar 

  • Benajiba A, Maroux S (1980) Purification and characterization of an aminopeptidase A from hog intestinal brush-border membrane. Eur J Biochem 107(2):381–388. doi:10.1111/j.1432-1033.1980.tb06040.x

    Article  CAS  PubMed  Google Scholar 

  • Bennett C, Leblond G, Haddad A (1974) Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labelled fucose injection into rats. J Cell Biol 60:258–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertenshaw GP, Turk BE, Hubbard SJ, Matters GL, Bylander JE, Crisman JM, Cantley LC, Bond JS (2001) Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity. J Biol Chem 276(16):13248–13255. doi:10.1074/jbc.M011414200

    Article  CAS  PubMed  Google Scholar 

  • Bieger W, Scheele G (1980) A sensitive and specific enzyme assay for elastase activity using α-[3H]elastin as substrate. Anal Biochem 104(2):239–246

    Article  CAS  PubMed  Google Scholar 

  • Bieth JG, Dirrig S, Jung ML, Boudier C, Papamichael E, Sakarellos C, Dimicoli JL (1989) Investigation of the active-center of rat pancreatic elastase. Biochim Biophys Acta 994(1):64–74

    Article  CAS  PubMed  Google Scholar 

  • Biol MC, Pintori S, Mathian B, Louisot P (1991) Dietary-regulation of intestinal glycosyl-transferase activities – relation between developmental-changes and weaning in rats. J Nutr 121(1):114–125

    CAS  PubMed  Google Scholar 

  • Bird R, Hopkins R (1954) The action of some α-amylases on amylose. Biochem J 56(1):86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci 77(3):1496–1500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boffelli D, Weber FE, Compassi S, Werder M, Schulthess G, Hauser H (1997) Reconstitution and further characterization of the cholesterol transport activity of the small-intestinal brush border membrane. Biochemistry 36(35):10784–10792. doi:10.1021/bi970625i

    Article  CAS  PubMed  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256(4):1604–1607

    CAS  PubMed  Google Scholar 

  • Borel P, Armand M, Ythier P, Dutot G, Melin C, Senft M, Lafont H, Lairon D (1994) Hydrolysis of emulsions with different triglycerides and droplet sizes by gastric lipase in vitro. Effect on pancreatic lipase activity. J Nutr Biochem 5(3):124–133

    Article  CAS  Google Scholar 

  • Borgstrom B, Dahlqvist A, Lundh G, Sjovall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36(10):1521–1536. doi:10.1172/jci103549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourne G, MacKinnon M (1943) The distribution of alkaline phosphatase in various tissues. Exp Physiol 32(1):1–20

    Article  CAS  Google Scholar 

  • Brasitus TA, Dudeja PK (1985) Alterations in the physical state and composition of brush border membrane lipids of rat enterocytes during differentiation. Arch Biochem Biophys 240(1):483–488. doi:10.1016/0003-9861(85)90054-2

    Article  CAS  PubMed  Google Scholar 

  • Brasseur JG, Banco GG, Ailiani AC, Wang Y, Neuberger T, Smith NB, Webb AG (2009) Motility and absorption in the small intestines: integrating MRI with lattice Boltzmann models. In: Biomedical imaging: from nano to macro, 2009. ISBI’09. IEEE international symposium on 2009. IEEE, pp 374–377

    Google Scholar 

  • Bretscher A, Weber K (1979) Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci 76(5):2321–2325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bretscher A, Weber K (1980) Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol 86(1):335–340

    Article  CAS  PubMed  Google Scholar 

  • Brown AL (1962) Microvilli of human jejunal epithelial cell. J Cell Biol 12(3):623–627. doi:10.1083/jcb.12.3.623

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown PD, Sepúlveda FV (1985) A rabbit jejunal isolated enterocyte preparation suitable for transport studies. J Physiol 363(1):257–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brownlee IA, Forster DJ, Wilcox MD, Dettmar PW, Seal CJ, Pearson JP (2010) Physiological parameters governing the action of pancreatic lipase. Nutr Res Rev 23(1):146–154. doi:10.1017/s0954422410000028

    Article  CAS  PubMed  Google Scholar 

  • Büller HA, Montgomery RK, Sasak WV, Grand RJ (1987) Biosynthesis, glycosylation, and intracellular transport of intestinal lactase-phlorizin hydrolase in rat. J Biol Chem 262(35):17206–17211

    PubMed  Google Scholar 

  • Bünger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJEJ, Müller M (2007) Genome-wide analysis of PPARα activation in murine small intestine. Physiol Genomics 30(2):192–204. doi:10.1152/physiolgenomics.00198.2006

    Article  PubMed  CAS  Google Scholar 

  • Bunnett NW, Turner AJ, Hryszko J, Kobayashi R, Walsh JH (1988) Isolation of endopeptidase-24.11 (EC 3.4.24.11, “enkephalinase”) from the pig stomach. Hydrolysis of substance P, gastrin-releasing peptide 10, [Leu5] enkephalin, and [Met5] enkephalin. Gastroenterology 95(4):952–957

    CAS  PubMed  Google Scholar 

  • Cajori F (1933) The enzyme activity of dogs intestinal juice and its relation to intestinal digestion. Am J Physiol 104(3):659–668

    CAS  Google Scholar 

  • Caporale C, Troncone R (1988) Isolation and characterization of an amphiphilic form of human intestinal aminopeptidase N. J Pediatr Gastroenterol Nutr 7(5):675–679

    Article  CAS  PubMed  Google Scholar 

  • Cerneus DP, Ueffing E, Posthuma G, Strous GJ, van der Ende A (1993) Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J Biol Chem 268(5):3150–3155

    CAS  PubMed  Google Scholar 

  • Cezard JP, Conklin KA, Das BC, Gray GM (1979) Incomplete intracellular forms of intestinal surface membrane sucrase-isomaltase. J Biol Chem 254(18):8969–8975

    CAS  PubMed  Google Scholar 

  • Cezard JP, Broyart JP, Cuisiniergleizes P, Mathieu H (1983) Sucrase isomaltase regulation by dietary sucrose in the rat. Gastroenterology 84(1):18–25

    CAS  PubMed  Google Scholar 

  • Chahinian H, Fantini J, Garmy N, Manco G, Sarda L (2010) Non-lipolytic and lipolytic sequence-related carboxylesterases: a comparative study of the structure–function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase. Biochim Biophys Acta Mol Cell Biol Lipids 1801(11):1195–1204

    Article  CAS  Google Scholar 

  • Chu S-hW, Walker WA (1986) Developmental changes in the activities of sialyl- and fucosyltransferases in rat small intestine. Biochim Biophys Acta 883(3):496–500. doi:10.1016/0304-4165(86)90289-8

    Article  CAS  PubMed  Google Scholar 

  • Coates D (2003) The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol 35(6):769–773. doi:10.1016/S1357-2725(02)00309-6

    Article  CAS  PubMed  Google Scholar 

  • Colbeau A, Maroux S (1978) Integration of alkaline phosphatase in the intestinal brush border membrane. Biochim Biophys Acta (BBA) Biomembr 511(1):39–51

    Article  CAS  Google Scholar 

  • Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61(2):75–85. doi:10.1016/j.addr.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  • Cornish-Bowden A (1976) Principles of enzyme kinetics. Butler and Tanner, London

    Google Scholar 

  • Cowell G, Tranum-Jensen J, Sjöström H, Norén O (1986) Topology and quaternary structure of pro-sucrase/isomaltase and final-form sucrase/isomaltase. Biochem J 237(2):455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crater JS, Carrier RL (2010) Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci 10(12):1473–1483. doi:10.1002/mabi.201000137

    Article  CAS  PubMed  Google Scholar 

  • Creamer B, Shorter RG, Bamforth J (1961) The turnover and shedding of epithelial cells. Gut 2(2):110–116. doi:10.1136/gut.2.2.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cu Y, Saltzman WM (2009) Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 61(2):101–114. doi:10.1016/j.addr.2008.09.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dallas Johnson K, Clark A, Marshall S (2002) A functional comparison of ovine and porcine trypsins. Comp Biochem Physiol B Biochem Mol Biol 131(3):423–431

    Article  PubMed  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Fett C, Kratz A (1989) Demonstration and modification of intervillous pH profiles in rat small intestine in vitro. Am J Physiol 257(4):G489–G495

    CAS  PubMed  Google Scholar 

  • Danielsen EM (1982) Biosynthesis of intestinal microvillar proteins – pulse-chase labeling studies on aminopeptidase N and sucrase-isomaltase. Biochem J 204(3):639–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danielsen EM (1990) Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase. Biochemistry 29(1):305–308

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM (1992) Folding of intestinal brush border enzymes. Evidence that high-mannose glycosylation is an essential early event. Biochemistry 31(8):2266–2272. doi:10.1021/bi00123a008

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM (1994) Dimeric assembly of enterocyte brush-border enzymes. Biochemistry 33(6):1599–1605. doi:10.1021/bi00172a041

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM (1995) Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry 34(5):1596–1605. doi:10.1021/bi00005a016

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM, Noren O, Sjostrom H, Ingram J, Kenny A (1980a) Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent-and proteinase-solubilized forms. Biochem J 189:591–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danielsen EM, Vyas J, Kenny AJ (1980b) A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties. Biochem J 191(2):645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danielsen E, Norén O, Sjöström H (1982) Biosynthesis of intestinal microvillar proteins. Translational evidence in vitro that aminopeptidase N is synthesized as a Mr-115000 polypeptide. Biochem J 204(1):323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danielsen E, Sjöström H, Norén O (1983) Biosynthesis of intestinal microvillar proteins. Pulse-chase labelling studies on maltase-glucoamylase, aminopeptidase A and dipeptidyl peptidase IV. Biochem J 210(2):389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danielsen EM, Cowell GM, Noren O, Sjostrom H (1984) Biosynthesis of microvillar proteins. Biochem J 221(1):1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Beer EJ, Johnston CG, Wilson DW (1935) The composition of intestinal secretions. J Biol Chem 108(1):113–120

    Google Scholar 

  • De Caro A, Figarella C, Amic J, Michel R, Guy O (1977) Human pancreatic lipase: a glycoprotein. Biochim Biophys Acta Protein Struct 490(2):411–419

    Article  Google Scholar 

  • DelMar EG, Largman C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99(2):316–320

    Article  CAS  PubMed  Google Scholar 

  • Doell RG, Rosen G, Kretchme N (1965) Immunochemical studies of intestinal disaccharidases during normal and precocious development. Proc Natl Acad Sci U S A 54(4):1268–1273. doi:10.1073/pnas.54.4.1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duluc I, Jost B, Freund JN (1993) Multiple levels of control of the stage- and region-specific expression of rat intestinal lactase. J Cell Biol 123(6):1577–1586. doi:10.1083/jcb.123.6.1577

    Article  CAS  PubMed  Google Scholar 

  • Dutilh CE, Van Doren PJ, Verheul FEAM, De Haas GH (1975) Isolation and properties of prophosholipase A2 from Ox and sheep pancreas. Eur J Biochem 53(1):91–97

    Article  CAS  Google Scholar 

  • Ebata M, Miyazaki K (1967) Partial characterization of human pancreatic carboxypeptidase A. Cell Mol Life Sci 23(12):1007–1008

    Article  CAS  Google Scholar 

  • Engle MJ, Mahmood A, Alpers DH (1995) Two rat intestinal alkaline phosphatase isoforms with different carboxyl-terminal peptides are both membrane-bound by a glycan phosphatidylinositol linkage. J Biol Chem 270(20):11935–11940. doi:10.1074/jbc.270.20.11935

    Article  CAS  PubMed  Google Scholar 

  • Erickson RH, Suzuki Y, Sedlmayer A, Song IS, Kim YS (1992) Rat intestinal angiotensin-converting enzyme: purification, properties, expression, and function. Am J Physiol 263(4):G466–G473

    CAS  PubMed  Google Scholar 

  • Fan MZ, Adeola O, Asem EK (1999) Characterization of brush border membrane-bound alkaline phosphatase activity in different segments of the porcine small intestine. J Nutr Biochem 10(5):299–305

    Article  CAS  PubMed  Google Scholar 

  • Fan MZ, Adeola O, Asem EK, King D (2002) Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities. Comp Biochem Physiol A Mol Integr Physiol 132(3):599–607

    Article  PubMed  Google Scholar 

  • Farooq N, Yusufi ANK, Mahmood R (2004) Effect of fasting on enzymes of carbohydrate metabolism and brush border membrane in rat intestine. Nutr Res 24(6):407–416. doi:10.1016/j.nutres.2004.01.004

    Article  CAS  Google Scholar 

  • Feracci H, Maroux S (1980) Rabbit intestinal aminopeptidase N. Purification and molecular properties. Biochim Biophys Acta 599(2):448–463. doi:10.1016/0005-2736(80)90190-X

    Article  CAS  PubMed  Google Scholar 

  • Feracci H, Benajiba A, Gorvel JP, Doumeng C, Maroux S (1981) Enzymatic and immunological properties of the protease form of aminopeptidases N and A from pig and rabbit intestinal brush border. Biochim Biophys Acta 658(1):148–157. doi:10.1016/0005-2744(81)90258-8

    Article  CAS  PubMed  Google Scholar 

  • Ferraris RP, Villenas SA, Diamond J (1992) Regulation of brush-border enzyme activities and enterocyte migration rates in mouse small intestine. Am J Physiol 262(6):G1047–G1059

    CAS  PubMed  Google Scholar 

  • Flanagan PR, Forstner GG (1979) Enzyme activity in partly dissociated fragments of rat intestinal maltase/glucoamylase. Biochem J 177(2):487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Folk JE, Gladner JA (1958) Carboxypeptidase B: I. purification of the zymogen and specificity of the enzyme. J Biol Chem 231(1):379–391

    CAS  PubMed  Google Scholar 

  • Frangos SG, Knox R, Yano Y, Chen E, Luozzo GD, Chen AH, Sumpio BE (2001) The integrin-mediated cyclic strain-induced signaling pathway in vascular endothelial cells. Endothelium 8(1):1–10. doi:10.3109/10623320109063153

    CAS  PubMed  Google Scholar 

  • Furihata C, Saito D, Fujiki H, Kanai Y, Matsushima T, Sugimura T (1980) Purification and characterization of pepsinogens and a unique pepsin from rat stomach. Eur J Biochem 105(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Galand G (1984) Purification and characterization of kidney and intestinal brush-border membrane trehalases from the rabbit. Biochim Biophys Acta Protein Struct Mol Enzymol 789(1):10–19

    Article  CAS  Google Scholar 

  • Galand G (1989) Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp Biochem Physiol B Comp Biochem 94(1):1–11. doi:10.1016/0305-0491(89)90002-3

    Article  CAS  Google Scholar 

  • Galand G, Forstner GG (1974a) Isolation of microvillus plasma-membranes from suckling-rat intestine – influence of premature induction of digestive enzymes by injection of cortisol acetate. Biochem J 144(2):293–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galand G, Forstner GG (1974b) Soluble neutral and acid maltases in suckling-rat intestine – effect of cortisol and development. Biochem J 144(2):281–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galluser M, Belkhou R, Freund J-N, Duluc I, Torp N, Danielsen M, Raul F (1991) Adaptation of intestinal hydrolases to starvation in rats: effect of thyroid function. J Comp Physiol B 161(4):357–361. doi:10.1007/bf00260793

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy V, Gupta N, Martindale RG (2006) Protein digestion and absorption. In: Johnson LR (ed) Physiology of the gastrointestinal tract, vol 2, 4th edn. Elsevier, USA, pp 1667–1687

    Chapter  Google Scholar 

  • Geokas MC, Largman C, Brodrick JW, Raeburn S, Rinderknecht H (1975) Human pancreatic carboxypeptidase B. I. Isolation, purification, and characterization of fraction II. Biochim Biophys Acta Enzymol 391(2):396–402

    Article  CAS  Google Scholar 

  • Gerber LD, Kodukula K, Udenfriend S (1992) Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 267(17):12168–12173

    CAS  PubMed  Google Scholar 

  • Goda T (2000) Regulation of the expression of carbohydrate digestion/absorption-related genes. Br J Nutr 84:S245–S248. doi:10.1079/096582197388626

    Article  CAS  PubMed  Google Scholar 

  • Goda T, Yasutake H, Suzuki Y, Takase S, Koldovsky O (1995) Diet-induced changes in gene expression of lactase in rat jejunum. Am J Physiol 268(6):G1066–G1073

    CAS  PubMed  Google Scholar 

  • Götze H, Adelson JW, Hadorn HB, Portmann R, Troesch V (1972) Hormone-elicited enzyme release by the small intestinal wall. Gut 13(6):471–476. doi:10.1136/gut.13.6.471

    Article  PubMed Central  PubMed  Google Scholar 

  • Gray GM (2000) Digestion and absorption of carbohydrates. In: Stipanuk MH (ed) Biological and physiological aspects of human nutrition, vol 5. W. B. Saunders Company, USA, pp 91–106

    Google Scholar 

  • Gray GM, Lally BC, Conklin KA (1979) Action of intestinal sucrase-isomaltase and its free monomers on an alpha-limit dextrin. J Biol Chem 254(13):6038–6043

    CAS  PubMed  Google Scholar 

  • Grünberg J, Sterchi EE (1995) Human lactase–phlorizin hydrolase: evidence of dimerization in the endoplasmic reticulum. Arch Biochem Biophys 323(2):367–372. doi:10.1006/abbi.1995.9952

    Article  PubMed  Google Scholar 

  • Guan D, Yoshioka M, Erickson RH, Heizer W, Kim YS (1988) Protein digestion in human and rat small intestine: role of new neutral endopeptidases. Am J Physiol Gastroint Liver Physiol 255(2):G212–G220

    CAS  Google Scholar 

  • Halbhuber KJ, Schulze M, Rhode H, Bublitz R, Feuerstein H, Walter M, Linss W, Meyer HW, Horn A (1994) Is the brush-border membrane of the intestinal-mucosa a generator of chymosomes. Cell Mol Biol 40(8):1077–1096

    CAS  PubMed  Google Scholar 

  • Halsted CH, E-h L, Luthi-Carter R, Villanueva JA, Gardner JM, Coyle JT (1998) Folylpoly-γ-glutamate. Carboxypeptidase from pig jejunum: molecular characterization and relation to glutamate carboxypeptidase II. J Biol Chem 273(32):20417–20424. doi:10.1074/jbc.273.32.20417

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Niels-Christiansen L-L, Immerdal L, Nystrøm BT, Danielsen EM (2007) Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption. Am J Physiol 293(6):G1325–G1332. doi:10.1152/ajpgi.00379.2007

    CAS  Google Scholar 

  • Hansen GH, Rasmussen K, Niels-Christiansen L-L, Danielsen EM (2009) Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol 297(4):G708–G715. doi:10.1152/ajpgi.00192.2009

    CAS  Google Scholar 

  • Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman JA, Craik CS (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci 97(14):7754–7759. doi:10.1073/pnas.140132697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauri H-P, Quaroni A, Isselbacher KJ (1979) Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase—isomaltase. Proc Natl Acad Sci 76(10):5183–5186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauri HP, Sterchi EE, Bienz D, Fransen JAM, Marxer A (1985) Expression and intracellular-transport of microvillus membrane hydrolases in human intestinal epithelial-cells. J Cell Biol 101(3):838–851

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102(12):4501–4524

    Article  CAS  PubMed  Google Scholar 

  • Henning SJ (1981) Postnatal-development – coordination of feeding, digestion, and metabolism. Am J Physiol 241(3):G199–G214

    CAS  PubMed  Google Scholar 

  • Herbst JJ, Koldovsk O (1972) Cell migration and cortisone induction of sucrase activity in jejunum and ileum. Biochem J 126(3):471–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez G, Velasco N, Wainstein C, Castillo L, Bugedo G, Maiz A, Lopez F, Guzman S, Vargas C (1999) Gut mucosal atrophy after a short enteral fasting period in critically ill patients. J Crit Care 14(2):73–77. doi:10.1016/s0883-9441(99)90017-5

    Article  CAS  PubMed  Google Scholar 

  • Heyman MB (2006) Lactose intolerance in infants, children, and adolescents. Pediatrics 118(3):1279–1286. doi:10.1542/peds.2006-1721

    Article  PubMed  Google Scholar 

  • Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J (1998) Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 143(6):1485–1503. doi:10.1083/jcb.143.6.1485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hodin RA, Chamberlain SM, Meng S (1995) Pattern of rat intestinal brush-border enzyme gene expression changes with epithelial growth state. Am J Physiol 269(2):C385–C391

    CAS  PubMed  Google Scholar 

  • Holmes R, Lobley RW (1989) Intestinal brush-border revisited. Gut 30(12):1667–1678. doi:10.1136/gut.30.12.1667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC, Moroz SP, Hadorn H-B, Sadler JE, Roscher AA (2002) Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 70(1):20–25. doi:10.1086/338456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong SS, Nakamura M, Magee DF (1967) Relationship between duodenal Ph and pancreatic secretion in dogs and pigs. Ann Surg 166(5):778–782. doi:10.1097/00000658-196711000-00007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honma K, Mochizuki K, Goda T (2007) Carbohydrate/fat ratio in the diet alters histone acetylation on the sucrase–isomaltase gene and its expression in mouse small intestine. Biochem Biophys Res Commun 357(4):1124–1129. doi:10.1016/j.bbrc.2007.04.070

    Article  CAS  PubMed  Google Scholar 

  • Hooper N, Keen J, Turner A (1990) Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J 265(2):429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howe CL, Mooseker MS, Graves TA (1980) Brush-border calmodulin. A major component of the isolated microvillus core. J Cell Biol 85(3):916–923. doi:10.1083/jcb.85.3.916

    Article  CAS  PubMed  Google Scholar 

  • Hubner C, Lindner SG, Stern M, Claussen M, Kohlschutter A (1988) Membrane fluidity and lipid-composition of rat small intestinal brush-border membranes during postnatal maturation. Biochim Biophys Acta 939(1):145–150. doi:10.1016/0005-2736(88)90055-7

    Article  CAS  PubMed  Google Scholar 

  • Hui DY, Howles PN (2002) Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res 43(12):2017–2030. doi:10.1194/jlr.R200013-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Hui D, Hayakawa K, Oizumi J (1993) Lipoamidase activity in normal and mutagenized pancreatic cholesterol esterase (bile salt-stimulated lipase). Biochem J 291:65–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurtley SM, Helenius A (1989) Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol 5(1):277–307

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Tranum-Jensen J, Noren O, Sjöström H, Christiansen K (1981) Reconstitution of purified amphiphilic pig intestinal microvillus aminopeptidase. Mode of membrane insertion and morphology. Biochem J 199(1):179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18(1):59–69

    Article  CAS  Google Scholar 

  • International Union of Biochemistry and Molecular Biology (2013). Accessed 2 July 2013

    Google Scholar 

  • Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol 296(6):E1183–E1194. doi:10.1152/ajpendo.90899.2008

    CAS  Google Scholar 

  • Itami C, Taguchi R, Ikezawa H, Nakabayashi T (1997) Release of ectoenzymes from small intestine brush border membranes of mice by phospholipases. Biosci Biotechnol Biochem 61(2):336–340

    Article  CAS  PubMed  Google Scholar 

  • Jensen MS, Jensen SK, Jakobsen K (1997) Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J Anim Sci 75(2):437–445

    CAS  PubMed  Google Scholar 

  • Kaunitz J, Wright E (1984) Kinetics of sodium-glucose cotransport in bovine intestinal brush border vesicles. J Membr Biol 79(1):41–51. doi:10.1007/bf01868525

    Article  CAS  PubMed  Google Scholar 

  • Kelly JJ, Alpers DH (1973) Properties of human intestinal glucoamylase. Biochim Biophys Acta 315(1):113–122. doi:10.1016/0005-2744(73)90135-6

    Article  CAS  PubMed  Google Scholar 

  • Kenny AJ, Maroux S (1982) Topology of microvillar membrane hydrolases of kidney and intestine. Physiol Rev 62(1):91–128

    CAS  PubMed  Google Scholar 

  • Kenny AJ, Fulcher IS, McGill KA, Kershaw D (1983) Proteins of the kidney microvillar membrane – reconstitution of endopeptidase in liposomes shows that it is a short-stalked protein. Biochem J 211(3):755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kera Y, Liu Z, Matsumoto T, Sorimachi Y, Nagasaki H, Yamada R-h (1999) Rat and human membrane dipeptidase: tissue distribution and developmental changes. Comp Biochem Physiol B Biochem Mol Biol 123(1):53–58. doi:10.1016/S0305-0491(99)00039-5

    Article  CAS  PubMed  Google Scholar 

  • Kessler M, Acuto O, Storelli C, Murer H, Muller M, Semenza G (1978) Modified procedure for rapid preparation of efficiently transporting vesicles from small intestinal brush-border membranes – their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta 506(1):136–154

    Article  CAS  PubMed  Google Scholar 

  • Killian JA, von Heijne G (2000) How proteins adapt to a membrane–water interface. Trends Biochem Sci 25(9):429–434

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim YW, Birtwhistle W (1972) Peptide hydrolases in brush border and soluble fractions of small intestinal-mucosa of rat and man. J Clin Invest 51(6):1419–1430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kingsley DM, Kozarsky KF, Hobble L, Krieger M (1986) Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-GalUDP-GalNAc 4-epimerase deficient mutant. Cell 44(5):749–759. doi:10.1016/0092-8674(86)90841-X

    Article  CAS  PubMed  Google Scholar 

  • Kolínská J, Kraml J (1972) Separation and characterization of sucrase-isomaltase and of glucoamylase of rat intestine. Biochim Biophys Acta 284(1):235–247. doi:10.1016/0005-2744(72)90062-9

    Article  PubMed  Google Scholar 

  • Kozak EM, Tate SS (1982) Glutathione-degrading enzymes of microvillus membranes. J Biol Chem 257(11):6322–6327

    CAS  PubMed  Google Scholar 

  • Krasinski SD, Estrada G, Yeh KY, Yeh M, Traber PG, Rings E, Buller HA, Verhave M, Montgomery RK, Grand RJ (1994) Transcriptional regulation of intestinal hydrolase biosynthesis during postnatal-development in rats. Am J Physiol 267(4):G584–G594

    CAS  PubMed  Google Scholar 

  • Lagocki JW, Law JH, Kézdy FJ (1973) The kinetic study of enzyme action on substrate monolayers: pancreatic lipase reactions. J Biol Chem 248(2):580–587

    CAS  PubMed  Google Scholar 

  • Lalles JP (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68(6):323–332. doi:10.1111/j.1753-4887.2010.00292.x

    Article  PubMed  Google Scholar 

  • Largman C (1983) Isolation and characterization of rat pancreatic elastase. Biochemistry 22(16):3763–3770

    Article  CAS  PubMed  Google Scholar 

  • Largman C, Brodrick JW, Geokas MC (1976) Purification and characterization of two human pancreatic elastases. Biochemistry 15(11):2491–2500

    Article  CAS  PubMed  Google Scholar 

  • Leibach FH, Ganapathy V (1996) Peptide transporters in the intestine and the kidney. Annu Rev Nutr 16(1):99–119

    Article  CAS  PubMed  Google Scholar 

  • Lentle RG, Janssen PWM (2011a) Contractile activity and control of the physical process of digestion within a gut segment. In: Lentle RG, Janssen PWM (eds) The physical processes of digestion. Springer, New York, pp 131–164

    Chapter  Google Scholar 

  • Lentle RG, Janssen PWM (2011b) Flow, mixing and absorption at the mucosa. In: Lentle RG, Janssen PWM (eds) The physical processes of digestion. Springer, New York, pp 234–294

    Chapter  Google Scholar 

  • Lentle RG, Janssen PWM (2011c) Local motility, flow and mixing in tubular segments of the gut. In: Lentle RG, Janssen PWM (eds) The physical processes of digestion. Springer, New York, pp 165–199

    Chapter  Google Scholar 

  • Lentle R, Janssen P, DeLoubens C, Lim Y, Hulls C, Chambers P (2013) Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum. Neurogastroenterol Motil 25(11):881–e700

    Article  CAS  PubMed  Google Scholar 

  • Light A, Janska H (1989) Enterokinase (enteropeptidase): comparative aspects. Trends Biochem Sci 14(3):110–112. doi:10.1016/0968-0004(89)90133-3

    Article  CAS  PubMed  Google Scholar 

  • Lim YF, Williams MAK, Lentle RG, Janssen PWM, Mansel BW, Keen SAJ, Chambers P (2013) An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum (Trichosurus vulpecula). J R Soc Interface 10(81):20121008. doi:10.1098/rsif.2012.1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindahl A, Ungell AL, Knutson L, Lennernas H (1997) Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm Res 14(4):497–502. doi:10.1023/a:1012107801889

    Article  CAS  PubMed  Google Scholar 

  • Lingappa VR (1989) Intracellular traffic of newly synthesized proteins. Current understanding and future prospects. J Clin Invest 83(3):739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu L, Yu Y-L, Liu C, Wang X-T, Liu X-D, Xie L (2011) Insulin deficiency induces abnormal increase in intestinal disaccharidase activities and expression under diabetic states, evidences from in vivo and in vitro study. Biochem Pharmacol 82(12):1963–1970. doi:10.1016/j.bcp.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  • Lojda Z (1979) Studies on dipeptidyl (amino) peptidase IV (glycyl-proline naphthylamidase). Histochemistry 59(3):153–166

    Article  CAS  PubMed  Google Scholar 

  • Louvard D, Maroux S, Baratti J, Desnuelle P (1973) On the distribution of enterokinase in porcine intestine and on its subcellular localization. Biochim Biophys Acta 309(1):127–137. doi:10.1016/0005-2744(73)90324-0

    Article  CAS  PubMed  Google Scholar 

  • Louvard D, Maroux S, Vannier C, Desneulle P (1975) Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and triton X-100. Biochim Biophys Acta 375(2):236–248. doi:10.1016/0005-2736(75)90192-3

    Article  CAS  Google Scholar 

  • Low MG (1987) Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J 244(1):1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Low MG (1989) Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins. FASEB J 3(5):1600–1608

    CAS  PubMed  Google Scholar 

  • Low M, Saltiel A (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239(4837):268–275. doi:10.1126/science.3276003

    Article  CAS  PubMed  Google Scholar 

  • Lowe ME (1992) The catalytic site residues and interfacial binding of human pancreatic lipase. J Biol Chem 267(24):17069–17073

    CAS  PubMed  Google Scholar 

  • Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43(12):2007–2016. doi:10.1194/jlr.R200012-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Lucas M (1983) Determination of acid surface pH in vivo in rat proximal jejunum. Gut 24(8):734–739. doi:10.1136/gut.24.8.734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lueamsaisuk C, Lentle R, MacGibbon A, Matia-Merino L, Golding M (2013) Factors influencing the dynamics of emulsion structure during neonatal gastric digestion in an in vitro model. Food Hydrocoll 36:162–172

    Article  CAS  Google Scholar 

  • Lundgren P, Nilsson Å, Duan R-D (2001) Distribution and properties of neutral ceramidase activity in rat intestinal tract. Dig Dis Sci 46(4):765–772

    Article  CAS  PubMed  Google Scholar 

  • Macierzanka A, Rigby NM, Corfield AP, Wellner N, Bottger F, Mills ENC, Mackie AR (2011) Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 7(18):8077–8084

    Article  CAS  Google Scholar 

  • Mackey AD, Henderson GN, Gregory JF (2002) Enzymatic hydrolysis of pyridoxine-5′-β-d-glucoside is catalyzed by intestinal lactase-phlorizin hydrolase. J Biol Chem 277(30):26858–26864. doi:10.1074/jbc.M201774200

    Article  CAS  PubMed  Google Scholar 

  • Maestracci D (1976) Enzymic solubilization of the human intestinal brush border membrane enzymes. Biochim Biophys Acta 433(3):469–481. doi:10.1016/0005-2736(76)90274-1

    Article  CAS  PubMed  Google Scholar 

  • Mahmood S, Dani HM, Mahmood A (1984) Effect of dietary thiamin deficiency on intestinal functions in rats. Am J Clin Nutr 40(2):226–234

    CAS  PubMed  Google Scholar 

  • Maldonado-Valderrama J, Wilde P, Macierzanka A, Mackie A (2011) The role of bile salts in digestion. Adv Colloid Interf Sci 165(1):36–46. doi:10.1016/j.cis.2010.12.002

    Article  CAS  Google Scholar 

  • Mantei N, Villa M, Enzler T, Wacker H, Boll W, James P, Hunziker W, Semenza G (1988) Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J 7(9):2705

    PubMed Central  CAS  PubMed  Google Scholar 

  • Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na + −glucose cotransporter 1. Proc Natl Acad Sci U S A 104(38):15075–15080. doi:10.1073/pnas.0706678104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marinkovic DV, Marinkovic JN, Erdos EG, Robinson C (1977) Purification of carboxypeptidase B from human pancreas. Biochem J 163:253–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maroux S, Baratti J, Desnuelle P (1971) Purification and specificity of porcine enterokinase. J Biol Chem 246(16):5031–5039

    CAS  PubMed  Google Scholar 

  • Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. BioEssays 24(1):91–98. doi:10.1002/bies.10028

    Article  PubMed  Google Scholar 

  • Matsuda N, Morita N, Matsuda K, Watanabe M (1998) Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249(2):350–354. doi:10.1006/bbrc.1998.9151

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Erickson RH, Kim YS (1995) Localization and characterization of rat small intestinal aminopeptidase P and its role in prolyl peptide digestion. J Nutr Biochem 6(2):104–110. doi:10.1016/0955-2863(94)00015-e

    Article  CAS  Google Scholar 

  • Matsuura K, Ogawa M, Kosaki G, Minamiura N, Yamamoto T (1983) Proteochemical, immunological and enzymatic properties of two amylase components from human pancreatic juice. Clin Biochem 16(4):224–228

    Article  CAS  PubMed  Google Scholar 

  • Maze M, Gray GM (1980) Intestinal brush border aminooligopeptidases: cytosol precursors of the membrane enzyme. Biochemistry 19(11):2351–2358. doi:10.1021/bi00552a011

    Article  CAS  PubMed  Google Scholar 

  • Mazer NA, Carey MC, Kwasnick RF, Benedek GB (1979) Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 18(14):3064–3075. doi:10.1021/bi00581a024

    Article  CAS  PubMed  Google Scholar 

  • McConnell RE, Tyska MJ (2007) Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 177(4):671–681. doi:10.1083/jcb.200701144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McConnell RE, Higginbotham JN, Shifrin DA, Tabb DL, Coffey RJ, Tyska MJ (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185(7):1285–1298. doi:10.1083/jcb.200902147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McConnell RE, Benesh AE, Mao S, Tabb DL, Tyska MJ (2011) Proteomic analysis of the enterocyte brush border. Am J Physiol 300(5):G914–G926. doi:10.1152/ajpgi.00005.2011

    CAS  Google Scholar 

  • Menashe M, Romero G, Biltonen RL, Lichtenberg D (1986) Hydrolysis of dipalmitoylphosphatidylcholine small unilamellar vesicles by porcine pancreatic phospholipase A2. J Biol Chem 261(12):5328–5333

    CAS  PubMed  Google Scholar 

  • Mer G, Hietter H, Lefèvre J-F (1996) Stabilization of proteins by glycosylation examined by NMR analysis of a fucosylated proteinase inhibitor. Nat Struct Mol Biol 3(1):45–53

    Article  CAS  Google Scholar 

  • Mikhailova A, Rumsh L (2000) Enteropeptidase. Appl Biochem Biotechnol 88(1–3):159–174. doi:10.1385/abab:88:1-3:159

    Article  CAS  Google Scholar 

  • Mills JN, Tang J (1967) Molecular weight and amino acid composition of human gastricsin and pepsin. J Biol Chem 242(13):3093–3097

    CAS  PubMed  Google Scholar 

  • Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y (2009) Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol Lond 587(14):3651–3663. doi:10.1113/jphysiol.2009.172270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mochizuki K, Honma K, Shimada M, Goda T (2010) The regulation of jejunal induction of the maltase–glucoamylase gene by a high-starch/low-fat diet in mice. Mol Nutr Food Res 54(10):1445–1451. doi:10.1002/mnfr.200900467

    Article  CAS  PubMed  Google Scholar 

  • Moreau H, Gargouri Y, Lecat D, Junien JL, Verger R (1988a) Purification, characterization and kinetic-properties of the rabbit gastric lipase. Biochim Biophys Acta 960(3):286–293

    Article  CAS  PubMed  Google Scholar 

  • Moreau H, Gargouri Y, Lecat D, Junien JL, Verger R (1988b) Screening of preduodenal lipases in several mammals. Biochim Biophys Acta Lipids Lipid Metab 959(3):247–252

    Article  CAS  Google Scholar 

  • Morrill JS, Kwong LK, Sunshine P, Briggs GM, Castillo RO, Tsuboi KK (1989) Dietary Cho and stimulation of carbohydrases along villus column of fasted rat jejunum. Am J Physiol 256(1):G158–G165

    CAS  PubMed  Google Scholar 

  • Murer H, Hopfer U, Kinne R (1976) Sodium-proton antiport in brush-border-membrane vesicles isolated from rat small-intestine and kidney. Biochem J 154(3):597–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nachlas MM, Monis B, Rosenblatt D, Seligman AM (1960) Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol 7(2):261–264. doi:10.1083/jcb.7.2.261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naim HY (1993) Human small-intestinal angiotensin-converting enzyme – intracellular-transport, secretion and glycosylation. Biochem J 296:607–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naim H, Sterchi E, Lentze M (1987) Biosynthesis and maturation of lactase-phlorizin hydrolase in the human small intestinal epithelial cells. Biochem J 241(2):427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naim HY, Sterchi E, Lentze M (1988a) Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J Biol Chem 263(15):7242–7253

    CAS  PubMed  Google Scholar 

  • Naim HY, Sterchi EE, Lentze MJ (1988b) Structure, biosynthesis, and glycosylation of human small intestinal maltase-glucoamylase. J Biol Chem 263(36):19709–19717

    CAS  PubMed  Google Scholar 

  • Nakano T, Inoue I, Alpers DH, Akiba Y, Katayama S, Shinozaki R, Kaunitz JD, Ohshima S, Akita M, Takahashi S, Koyama I, Matsushita M, Komoda T (2009) Role of lysophosphatidylcholine in brush-border intestinal alkaline phosphatase release and restoration. Am J Physiol 297(1):G207–G214. doi:10.1152/ajpgi.90590.2008

    Article  CAS  Google Scholar 

  • Narimasa S, Tatsuo H, Mitsutaka Y, Toshio I (1979) Action of human pancreatic and salivary α-amylases on maltooligosaccharides: evaluation of kinetic parameters. Clin Chim Acta 97(2–3):253–260

    Article  Google Scholar 

  • Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers DH, Millán JL (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23(21):7525–7530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naughton M, Sanger F (1961) Purification and specificity of pancreatic elastase. Biochem J 78(1):156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols BL, Avery S, Sen P, Swallow DM, Hahn D, Sterchi E (2003) The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci 100(3):1432–1437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nordström C (1972) Enzymic release of enteropeptidase from isolated rat duodenal brush borders. Biochim Biophys Acta 268(3):711–718. doi:10.1016/0005-2744(72)90275-6

    Article  PubMed  Google Scholar 

  • Norén O, Sjöström H, Cowell GM, Tranum-Jensen J, Hansen OC, Welinder KG (1986) Pig intestinal microvillar maltase-glucoamylase. Structure and membrane insertion. J Biol Chem 261(26):12306–12309

    PubMed  Google Scholar 

  • Norris DA, Sinko PJ (1997) Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 63(11):1481–1492. doi:10.1002/(sici)1097-4628(19970314)63:11<1481::aid-app10>3.0.co;2-5

    Article  CAS  Google Scholar 

  • Norris DA, Puri N, Sinko PJ (1998) The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 34(2–3):135–154. doi:10.1016/s0169-409x(98)00037-4

    Article  CAS  PubMed  Google Scholar 

  • Oesterreicher TJ, Nanthakumar NN, Winston JH, Henning SJ (1998) Rat trehalase: cDNA cloning and mRNA expression in adult rat tissues and during intestinal ontogeny. Am J Physiol 274(5):R1220–R1227

    CAS  PubMed  Google Scholar 

  • Ohlsson L, Palmberg C, Duan R-D, Olsson M, Bergman T, Nilsson Å (2007) Purification and characterization of human intestinal neutral ceramidase. Biochimie 89(8):950–960. doi:10.1016/j.biochi.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson K, Tegner H (1973) Anionic and cationic dog trypsin. Isolation and partial characterization. Biochim Biophys Acta Protein Struct 317(2):328–337

    Article  CAS  Google Scholar 

  • Ohsawa K, Ohshima H (1984) Electrophoretic mobility and isoelectric point of purified brush border membrane vesicles. Electrophoresis 5(3):148–154

    Article  CAS  Google Scholar 

  • Olsson M, Duan RD, Ohlsson L, Nilsson A (2004) Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol 287(4):G929–G937. doi:10.1152/ajpgi.00155.2004

    CAS  Google Scholar 

  • Outzen H, Berglund GI, Smalås AO, Willassen NP (1996) Temperature and pH sensitivity of trypsins from atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol B Biochem Mol Biol 115(1):33–45

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer JR (1993) On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am J Physiol 265(3):G409–G417

    CAS  PubMed  Google Scholar 

  • Pappenheimer JR (2001) Role of pre-epithelial “unstirred” layers in absorption of nutrients from the human jejunum. J Membr Biol 179(3):185–204. doi:10.1007/s002320010047

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer J, Reiss K (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100(1):123–136. doi:10.1007/bf02209145

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer JR, Karnovsky ML, Maggio JE (1997) Absorption and excretion of undegradable peptides: role of lipid solubility and net charge. J Pharmacol Exp Ther 280(1):292–300

    CAS  PubMed  Google Scholar 

  • Pégorier J-P, May CL, Girard J (2004) Control of gene expression by fatty acids. J Nutr 134(9):2444S–2449S

    PubMed  Google Scholar 

  • Perevucnik G, Schurtenberger P, Lasic DD, Hauser H (1985) Size analysis of biological membrane-vesicles by gel-filtration, dynamic light-scattering and electron-microscopy. Biochim Biophys Acta 821(1):169–173. doi:10.1016/0005-2736(85)90168-3

    Article  CAS  PubMed  Google Scholar 

  • Perona JJ, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4(3):337–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson LM, Sokolovsky M, Vallee BL (1976) Purification and crystallization of human carboxypeptidase A. Biochemistry 15(12):2501–2508

    Article  CAS  PubMed  Google Scholar 

  • Piper D, Fenton BH (1965) pH stability and activity curves of pepsin with special reference to their clinical importance. Gut 6(5):506–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poelstra K, Bakker WW, Klok PA, Kamps J, Hardonk MJ, Meijer D (1997) Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am J Pathol 151(4):1163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pohl P, Saparov SM, Antonenko YN (1998) The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J 75(3):1403–1409. doi:10.1016/s0006-3495(98)74058-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prodanov E, Seigner C, Marchis-Mouren G (1984) Subsite profile of the active center of porcine pancreatic α-amylase. Kinetic studies using maltooligosaccharides as substrates. Biochem Biophys Res Commun 122(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Calvillo R, Robayo CC, Nichols BL (2006) Carbohydrate digestion and absorption. In: Stipanuk MH (ed) Biochemical, physiological, molecular aspects of human nutrition, 2nd edn. Saunders/Elsevier, USA, pp 151–166

    Google Scholar 

  • Ranaldi S, Vr B, Woudstra M, Rodriguez J, Guigliarelli B, Sturgis J, Carriere F, Fournel A (2008) Lid opening and unfolding in human pancreatic lipase at low pH revealed by site-directed spin labeling EPR and FTIR spectroscopy. Biochemistry 48(3):630–638

    Article  CAS  Google Scholar 

  • Raul F, Noriega R, Nsi-Emvo E, Doffoel M, Grenier JF (1983) Lactase activity is under hormonal control in the intestine of adult rat. Gut 24(7):648–652. doi:10.1136/gut.24.7.648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raul F, Goda T, Gosse F, Koldovsky O (1987) Short-term effect of a high-protein low-carbohydrate diet on aminopeptidase in adult-rat jejunoileum – site of aminopeptidase response. Biochem J 247(2):401–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40(D1):D343–D350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reisenauer AM, Lee EA, Castillo RO (1992) Ontogeny of membrane and soluble amino-oligopeptidases in rat intestine. Am J Physiol 262(1):G178–G184

    CAS  PubMed  Google Scholar 

  • Ren L, Cao X, Geng P, Bai F, Bai G (2011) Study of the inhibition of two human maltase-glucoamylases catalytic domains by different α-glucosidase inhibitors. Carbohydr Res 346(17):2688–2692. doi:10.1016/j.carres.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  • Riby J, Galand G (1985) Rat intestinal brush border membrane trehalase: some properties of the purified enzyme. Comp Biochem Physiol B Comp Biochem 82(4):821–827. doi:10.1016/0305-0491(85)90530-9

    Article  CAS  Google Scholar 

  • Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51. doi:10.1042/bj20040634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898. doi:10.1016/S0278-6915(02)00011-X

    Article  CAS  PubMed  Google Scholar 

  • Rigtrup KM, Kakkad B, Ong DE (1994) Purification and partial characterization of a retinyl ester hydrolase from the brush border of rat small intestine mucosa: probable identity with brush border phospholipase B. Biochemistry 33(9):2661–2666. doi:10.1021/bi00175a039

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Sagredo A, Canada FJ, Nieto O, Jimenez-Barbero J, Martin-Lomas M (1992) Substrate specificity of small-intestinal lactase – assessment of the role of the substrate hydroxyl groups. Eur J Biochem 209(1):415–422

    Article  CAS  PubMed  Google Scholar 

  • Robyt JF, Chittenden CG, Lee CT (1971) Structure and function of amylases: I. The subunit structure of porcine pancreatic α-amylase. Arch Biochem Biophys 144(1):160–167

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez IR, Taravel FR, Whelan WJ (1984) Characterization and function of pig intestinal sucrase-isomaltase and its separate subunits. Eur J Biochem 143(3):575–582. doi:10.1111/j.1432-1033.1984.tb08408.x

    Article  CAS  PubMed  Google Scholar 

  • Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355(6359):409

    Article  CAS  PubMed  Google Scholar 

  • Roubaty C, Portmann P (1988) Relation between intestinal alkaline-phosphatase activity and brush-border membrane-transport of inorganic-phosphate, D-glucose, and D-glucose-6-phosphate. Pflugers Arch 412(5):482–490. doi:10.1007/bf00582536

    Article  CAS  PubMed  Google Scholar 

  • Ruf J, Wacker H, James P, Maffia M, Seiler P, Galand G, von Kieckebusch A, Semenza G, Matei N (1990) Rabbit small intestinal trehalase. Purification, cDNA cloning, expression, and verification of glycosylphosphatidylinositol anchoring. J Biol Chem 265(25):15034–15039

    CAS  PubMed  Google Scholar 

  • Saito M, Murakami E, Suda M (1976) Circadian rhythms in disaccharidases of rat small intestine and its relation to food intake. Biochim Biophys Acta 421(1):177–179. doi:10.1016/0304-4165(76)90181-1

    Article  CAS  PubMed  Google Scholar 

  • Sakuma S, Sagawa T, Masaoka Y, Kataoka M, Yamashita S, Shirasaka Y, Tamai I, Ikumi Y, Kida T, Akashi M (2009) Stabilization of enzyme-susceptible glucoside bonds of phloridzin through conjugation with poly(gamma-glutamic acid). J Control Release 133(2):125–131. doi:10.1016/j.jconrel.2008.09.087

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H (1982) Lipid-dependent membrane enzymes. Eur J Biochem 127(1):123–128. doi:10.1111/j.1432-1033.1982.tb06845.x

    Article  CAS  PubMed  Google Scholar 

  • Sasajima K, Kawachi T, Sato S, Sugimura T (1975) Purification and properties of α, α-trehalase from the mucosa of rat small intestine. Biochim Biophys Acta 403(1):139–146. doi:10.1016/0005-2744(75)90017-0

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Preiser H, Maestracci D, Ghosh BK, Cerda JJ, Crane RK (1973) Purification of the human intestinal brush border membrane. Biochim Biophys Acta 323(1):98–112. doi:10.1016/0005-2736(73)90434-3

    Article  CAS  PubMed  Google Scholar 

  • Schwarz SM, Ling S, Hostetler B, Draper JP, Watkins JB (1984) Lipid-composition and membrane fluidity in the small-intestine of the developing rabbit. Gastroenterology 86(6):1544–1551

    CAS  PubMed  Google Scholar 

  • Schwert GW, Takenaka Y (1955) A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta 16:570–575

    Article  CAS  PubMed  Google Scholar 

  • Seetharam B, Yeh KY, Moog F, Alpers DH (1977) Development of intestinal brush-border membrane proteins in the rat. Biochim Biophys Acta 470(3):424–436. doi:10.1016/0005-2736(77)90133-x

    Article  CAS  PubMed  Google Scholar 

  • Seetharam B, Yeh KY, Alpers DH (1980) Turnover of intestinal brush-border proteins during postnatal development in rat. Am J Physiol 239(6):G524–G531

    CAS  PubMed  Google Scholar 

  • Semenza G (1986) Anchoring and biosynthesis of stalked brush-border membrane-proteins – glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2:255–313. doi:10.1146/annurev.cb.02.110186.001351

    Article  CAS  PubMed  Google Scholar 

  • Shirazi-Beechey SP, Moran AW, Batchelor DJ, Daly K, Al-Rammahi M (2011) Glucose sensing and signalling; regulation of intestinal glucose transport. Proc Nutr Soc 70(2):185–193. doi:10.1017/s0029665111000103

    Article  CAS  PubMed  Google Scholar 

  • Sigrist H, Ronner P, Semenza G (1975) A hydrophobic form of the small-intestinal sucrase-isomaltase complex. Biochim Biophys Acta 406(3):433–446. doi:10.1016/0005-2736(75)90022-x

    Article  CAS  PubMed  Google Scholar 

  • Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR (2008) Human intestinal maltase–glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375(3):782–792. doi:10.1016/j.jmb.2007.10.069

    Article  CAS  PubMed  Google Scholar 

  • Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR (2010) Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 285(23):17763–17770. doi:10.1074/jbc.M109.078980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sjöström H, Norén O, Jeppesen L, Staun M, Svensson B, Christiansen L (1978) Purification of different amphiphilic forms of a microvillus aminopeptidase from Pig small intestine using immunoadsorbent chromatography. Eur J Biochem 88(2):503–511. doi:10.1111/j.1432-1033.1978.tb12476.x

    Article  PubMed  Google Scholar 

  • Sjöström H, Norén O, Christiansen L, Wacker H, Semenza G (1980) A fully active, two-active-site, single-chain sucrase. isomaltase from pig small intestine. Implications for the biosynthesis of a mammalian integral stalked membrane protein. J Biol Chem 255(23):11332–11338

    PubMed  Google Scholar 

  • Skovbjerg H (1981) Immunoelectrophoretic studies on human small intestinal brush border proteins – the longitudinal distribution of peptidases and disaccharidases. Clin Chim Acta 112(2):205–212. doi:10.1016/0009-8981(81)90379-x

    Article  CAS  PubMed  Google Scholar 

  • Skovbjerg H, Michael Danielsen E, Noren O, Sjöström H (1984) Evidence for biosynthesis of lactase-phlorizin hydrolase as a single-chain high-molecular weight precursor. Biochim Biophys Acta Genl Subj 798(2):247–251

    Article  CAS  Google Scholar 

  • Skovbjerg H, Sjöström H, Noren O (1981) Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. Eur J Biochem 114(3):653–661

    Article  CAS  PubMed  Google Scholar 

  • Snider MD, Robbins PW (1982) Transmembrane organization of protein glycosylation. Mature oligosaccharide-lipid is located on the luminal side of microsomes from Chinese hamster ovary cells. J Biol Chem 257(12):6796–6801

    CAS  PubMed  Google Scholar 

  • Sonoyama K, Kiriyama S, Niki R (1994) Effect of dietary protein level on intestinal aminopeptidase activity and mRNA level in rats. J Nutr Biochem 5(6):291–297. doi:10.1016/0955-2863(94)90034-5

    Article  CAS  Google Scholar 

  • Sorensen SH, Noren O, Sjostrom H, Danielsen EM (1982) Amphiphilic pig intestinal microvillus maltase/glucoamylase. Eur J Biochem 126(3):559–568. doi:10.1111/j.1432-1033.1982.tb06817.x

    Article  CAS  PubMed  Google Scholar 

  • Spencer AU, Sun X, El-Sawaf M, Haxhija EQ, Brei D, Luntz J, Yang H, Teitelbaum DH (2006) Enterogenesis in a clinically feasible model of mechanical small-bowel lengthening. Surgery 140(2):212–220. doi:10.1016/j.surg.2006.03.005

    Article  PubMed Central  PubMed  Google Scholar 

  • Spilburg CA, Bethune JL, Vallee BL (1977) Kinetic properties of crystalline enzymes. Carboxypeptidase A. Biochemistry 16(6):1142–1150. doi:10.1021/bi00625a018

    Article  CAS  PubMed  Google Scholar 

  • Stahmann MA, Fruton JS, Bergmann M (1946) The specificity of carboxypeptidase. J Biol Chem 164(2):753–760

    CAS  PubMed  Google Scholar 

  • Stevens BR (2006) Digestion and absorption of protein. In: Stipanuk MH (ed) Biochemical, physiological, molecular aspects of human digestion. Saunders/Elsevier, St Louis, pp 200–218

    Google Scholar 

  • Stevenson NR, Ferrigni F, Parnicky K, Day S, Fierstein JS (1975) Effect of changes in feeding schedule on the diurnal rhythms and daily activity levels of intestinal brush border enzymes and transport systems. Biochim Biophys Acta 406(1):131–145. doi:10.1016/0005-2736(75)90048-6

    Article  CAS  PubMed  Google Scholar 

  • Stiefel DJ, Keller PJ (1973) Preparation and some properties of human pancreatic amylase including a comparison with human parotid amylase. Biochim Biophys Acta 302(2):345–361. doi:10.1016/0005-2744(73)90163-0

    Article  CAS  PubMed  Google Scholar 

  • Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27(1–2):57–92. doi:10.3109/10409239209082559

    Article  CAS  PubMed  Google Scholar 

  • Suh E, Chen L, Taylor J, Traber PG (1994) A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol 14(11):7340–7351. doi:10.1128/mcb.14.11.7340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svensson B, Danielsen M, Staun M, Jeppesen L, Norén O, Sjöström H (1978) An amphiphilic form of dipeptidyl peptidase IV from pig small-intestinal brush-border membrane. Eur J Biochem 90(3):489–498

    Article  CAS  PubMed  Google Scholar 

  • Takemori H, Zolotaryov FN, Ting L, Urbain T, Komatsubara T, Hatano O, Okamoto M, Tojo H (1998) Identification of functional domains of rat intestinal phospholipase B/lipase: its cDNA cloning, expression, and tissue distribution. J Biol Chem 273(4):2222–2231. doi:10.1074/jbc.273.4.2222

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kishi K, Igawa M, Takase S, Goda T (1998) Dietary carbohydrates enhance lactase/phlorizin hydrolase gene expression at a transcription level in rat jejunum. Biochem J 331:225–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka T, Suzuki A, Kuranuki S, Mochizuki K, Suruga K, Takase S, Goda T (2008) Higher expression of jejunal LPH gene in rats fed the high-carbohydrate/low-fat diet compared with those fed the low-carbohydrate/high-fat diet is associated with in vitro binding of Cdx-2 in nuclear proteins to its promoter regions. Life Sci 83(3–4):122–127. doi:10.1016/j.lfs.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Sepulveda P, Marciniszyn J, Chen KCS, Huang W-Y, Tao N, Liu D, Lanier JP (1973) Amino-acid sequence of porcine pepsin. Proc Natl Acad Sci 70(12):3437–3439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarvid I (1991) Early postnatal-development of peptide hydrolysis in chicks and guinea-pigs. Comp Biochem Physiol A Physiol 99(3):441–447. doi:10.1016/0300-9629(91)90030-g

    Article  CAS  Google Scholar 

  • The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  PubMed Central  CAS  Google Scholar 

  • Timofeeva NM, Gordova LA, Egorova VV, Iezuitova NN, Nikitina AA (2002) Membranous and soluble forms of intestinal enzymes in rat pups, whose mothers were kept on a low-protein diet during pregnancy or lactation. J Evol Biochem Physiol 38(2):189–197. doi:10.1023/a:1016510505169

    Article  CAS  Google Scholar 

  • Tiruppathi C, Balasubramania KA (1982) Purification and properties of an acid lipase from human gastric juice. Biochim Biophys Acta Lipids Lipid Metab 712(3):692–697

    Article  CAS  Google Scholar 

  • Tojo H, Ichida T, Okamoto M (1998) Purification and characterization of a catalytic domain of rat intestinal phospholipase B/lipase associated with brush border membranes. J Biol Chem 273(4):2214–2221

    Article  CAS  PubMed  Google Scholar 

  • Tsai PM, Duggan C (2005) Malabsorption syndromes. In: Caballero B (ed) Encyclopedia of human nutrition, 2nd edn. Elsevier, Oxford, pp 196–203. doi:10.1016/b0-12-226694-3/00197-6

    Chapter  Google Scholar 

  • Tso PP, Crissinger K (2006) Overview of digestion and absorption. In: Stipanuk MH (ed) Biochemical, and molecular aspects of human nutrition, 2nd edn. Saunders/Elsevier, USA, pp 151–166

    Google Scholar 

  • Tsuboi KK, Kwong LK, Yamada K, Sunshine P, Koldovsky O (1985) Nature of elevated rat intestinal carbohydrase activities after high-carbohydrate diet feeding. Am J Physiol 249(4):G510–G518

    CAS  PubMed  Google Scholar 

  • Tyska MJ, Mackey AT, Huang J-D, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16(5):2443–2457. doi:10.1091/mbc.E04-12-1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Beers EH, Buller HA, Grand RJ, Einerhand AWC, Dekker J (1995) Intestinal brush-border glycohydrolases – structure, function and development. Crit Rev Biochem Mol Biol 30(3):197–262

    Article  PubMed  Google Scholar 

  • van der Burg-Koorevaar MCD, Miret S, Duchateau GSMJE (2011) Effect of milk and brewing method on black tea catechin bioaccessibility. J Agric Food Chem 59(14):7752–7758. doi:10.1021/jf2015232

    Article  PubMed  CAS  Google Scholar 

  • Vandermeers A, Vandermeers-Piret MC, Rathé J, Christophe J (1974) On human pancreatic triacylglycerol lipase: Isolation and some properties. Biochim Biophys Acta Enzymol 370(1):257–268

    Article  CAS  Google Scholar 

  • Vaňková H, Pospíšilová M, Tichá M, Turková J (1994) Stabilization of trypsin by glycosylation. Biotechnol Tech 8(6):375–380. doi:10.1007/bf00154306

    Article  Google Scholar 

  • Van Oort MG, Dijkman R, Hille JDR, De Haas GH (1985) Kinetic behavior of porcine pancreatic phospholipase A2 on zwitterionic and negatively charged single-chain substrates. Biochemistry 24(27):7987–7993

    Article  PubMed  Google Scholar 

  • Vasseur M, Tellier C, Alvarado F (1982) Sodium-dependent activation of intestinal brush-border sucrase: correlation with activation by deprotonation from pH 5 to 7. Arch Biochem Biophys 218(1):263–274. doi:10.1016/0003-9861(82)90345-9

    Article  CAS  PubMed  Google Scholar 

  • Vesper H, Schmelz E-M, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129(7):1239–1250

    CAS  PubMed  Google Scholar 

  • Voynick IM, Fruton JS (1971) The comparative specificity of acid proteinases. Proc Natl Acad Sci 68(2):257–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wakim J, Robinson M, Thoma JA (1969) The active site of porcine-pancreatic alpha-amylase: factors contributing to catalysis. Carbohydr Res 10(4):487–503

    Article  CAS  Google Scholar 

  • Wang C-S, Hartsuck JA (1993) Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochim Biophys Acta 1166(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kera Y, Matsumoto T, Yamada R-h (1996) Purification and kinetic properties of a d-amino-acid peptide hydrolyzing enzyme from pig kidney cortex and its tentative identification with renal membrane dipeptidase. Biochim Biophys Acta 1298(1):109–118. doi:10.1016/S0167-4838(96)00126-4

    Article  PubMed  Google Scholar 

  • Watson W, Tuckerman J (1971) Effect of thyroid status on intestinal alkaline phosphatase levels in the rat. Endocrinology 88(6):1524

    Article  CAS  PubMed  Google Scholar 

  • Wehrmüller K (2008) Impact of dietary phospholipids on human health. ALP Sci (Switzerland)

    Google Scholar 

  • Weiser MM (1973a) Intestinal epithelial-cell surface membrane glycoprotein synthesis.1. Indicator of cellular differentiation. J Biol Chem 248(7):2536–2541

    CAS  PubMed  Google Scholar 

  • Weiser MM (1973b) Intestinal epithelial cell surface membrane glycoprotein synthesis. J Biol Chem 248(7):2542–2548

    CAS  PubMed  Google Scholar 

  • White SH, Wimley WC (1998) Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 1376(3):339–352

    Article  CAS  PubMed  Google Scholar 

  • Williams R, Beck F (1969) A histochemical study of gut maturation. J Anat 105(Pt 3):487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wistrand PJ, Kinne R (1977) Carbonic-anhydrase activity of isolated brush-border and basal-lateral membranes of renal tubular cells. Pflugers Arch 370(2):121–126. doi:10.1007/bf00581684

    Article  CAS  PubMed  Google Scholar 

  • Wojtczak L, NaŁĘCz MJ (1979) Surface charge of biological membranes as a possible regulator of membrane-bound enzymes. Eur J Biochem 94(1):99–107. doi:10.1111/j.1432-1033.1979.tb12876.x

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Erickson RH, Woodley JF, Gulli R, Guan D, Kim YS (1987) Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion. Am J Physiol 253(6):G781–G786

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Erickson RH, Kim YS (1988) Digestion and assimilation of proline-containing peptides by rat intestinal brush border membrane carboxypeptidases. Role of the combined action of angiotensin-converting enzyme and carboxypeptidase P. J Clin Invest 81(4):1090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young GP, Das L (1990) Influence of duodenal secretions and its components on release and activities of human brush-border enzymes. Biochim Biophys Acta 1022(3):393–400. doi:10.1016/0005-2736(90)90290-5

    Article  CAS  PubMed  Google Scholar 

  • Zakowski JJ, Bruns DE (1985) Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci 21(4):283–322

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Mesonero JE, Stutz A, Poirée J-C, Giudicelli J, Cursio R, Gloor SM, Semenza G (1998) Intestinal lactase-phlorizin hydrolase (LPH): the two catalytic sites; the role of the pancreas in pro-LPH maturation. FEBS Lett 435(2–3):225–228. doi:10.1016/s0014-5793(98)01076-x

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Schulten K (1996) Molecular dynamics study of phospholipase A2 on a membrane surface. Proteins 25(1):12–27. doi:10.1002/(SICI)1097-0134(199605)25:1<12::AID-PROT2>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman M, Ashe BM (1977) Substrate specificity of the elastase and the chymotrypsin-like enzyme of the human granulocyte. Biochim Biophys Acta Enzymol 480(1):241–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to extend a special thank-you to Peter Butterworth (Kings College, London, United Kingdom) for reviewing the manuscript; Juliet Ansell, Christine Butts (Plant and Food Research, Palmerston North, New Zealand), and Kevin Sutton (Plant and Food Research, Lincoln, New Zealand) for proof reading the manuscript; Tony Corbett (Plant and Food Research, Hawkes Bay) for the graphics; and Doug Hopcroft and Jianyu Chen from the Manawatu Microscopy and Imaging Centre, Massey University, Palmerston North, for the transmission electron microscope images of the BBMV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lentle .

Editor information

Editors and Affiliations

Declaration of Interest

Declaration of Interest

This paper was funded by a Ministry for Business Innovation and Employment (MBIE) grant.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hooton, D., Lentle, R., Monro, J., Wickham, M., Simpson, R. (2015). The Secretion and Action of Brush Border Enzymes in the Mammalian Small Intestine. In: Nilius, B., Gudermann, T., Jahn, R., Lill, R., Petersen, O., de Tombe, P. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 168. Springer, Cham. https://doi.org/10.1007/112_2015_24

Download citation

Publish with us

Policies and ethics