Skip to main content

The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Vol. 165

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 165))

Abstract

Mammalian cardiomyocytes withdraw from the cell cycle shortly after birth. Although the adult heart is unable to regenerate, numerous reports have shown that adult cardiomyocytes exhibit a dynamic range of cell cycle activity under various physiological and pathological conditions. Reason and consequence of cardiomyocyte cell cycle activity remain unclear and have led to a number of misconceptions. Understanding the scenarios in which cycling happens may promote new perspectives on the differentiated state of cardiomyocytes, treatments for hypertrophy, heart regeneration and cancer therapy. In this review we discuss the result of cardiomyocyte cell cycle activity in aging and disease and studies manipulating cardiac cell cycle activity to promote cardiac regeneration. In addition, we focus on cardiomyocyte differentiation, cell cycle exit, and the relationship between ploidy and regenerative potential. Finally, we provide observations that may further advance the goal of inducing adult mammalian heart regeneration through cardiomyocyte proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel ED, Doenst T (2011) Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc Res 90:234–242

    Article  PubMed  CAS  Google Scholar 

  • Ahuja P, Perriard E, Perriard JC, Ehler E (2004) Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 117:3295–3306

    Article  PubMed  CAS  Google Scholar 

  • Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544

    Article  PubMed  CAS  Google Scholar 

  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93:13742–13747

    Article  PubMed  CAS  Google Scholar 

  • Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657–666

    Article  PubMed  CAS  Google Scholar 

  • Angelis E, Garcia A, Chan SS, Schenke-Layland K, Ren S, Goodfellow SJ, Jordan MC, Roos KP, White RJ, MacLellan WR (2008) A cyclin D2-Rb pathway regulates cardiac myocyte size and RNA polymerase III after biomechanical stress in adult myocardium. Circ Res 102:1222–1229

    Article  PubMed  CAS  Google Scholar 

  • Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40:2023–2039

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227

    Article  PubMed  CAS  Google Scholar 

  • Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270

    Article  PubMed  CAS  Google Scholar 

  • Bishop SP, Hine P (1975) Cardiac muscle cytoplasmic and nuclear development during canine neonatal growth. Recent Adv Stud Cardiac Struct Metab 8:77–98

    PubMed  CAS  Google Scholar 

  • Blewett CJ, Cilley RE, Ehrlich HP, Blackburn JH 2nd, Dillon PW, Krummel TM (1997) Regenerative healing of incisional wounds in midgestational murine hearts in organ culture. J Thorac Cardiovasc Surg 113:880–885

    Article  PubMed  CAS  Google Scholar 

  • Braun-Dullaeus RC, Mann MJ, Ziegler A, von der Leyen HE, Dzau VJ (1999) A novel role for the cyclin-dependent kinase inhibitor p27(Kip1) in angiotensin II-stimulated vascular smooth muscle cell hypertrophy. J Clin Invest 104:815–823

    Article  PubMed  CAS  Google Scholar 

  • Brodsky WY, Uryvaeva IV (1977) Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol 50:275–332

    Article  PubMed  CAS  Google Scholar 

  • Brooks G, Poolman RA, McGill CJ, Li JM (1997) Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytes. J Mol Cell Cardiol 29:2261–2271

    Article  PubMed  CAS  Google Scholar 

  • Budirahardja Y, Gonczy P (2009) Coupling the cell cycle to development. Development 136: 2861–2872

    Article  PubMed  CAS  Google Scholar 

  • Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI, Lumbers ER (2003) Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat Rec A Discov Mol Cell Evol Biol 274:952–961

    Article  PubMed  Google Scholar 

  • Burton PB, Raff MC, Kerr P, Yacoub MH, Barton PJ (1999a) An intrinsic timer that controls cell-cycle withdrawal in cultured cardiac myocytes. Dev Biol 216:659–670

    Article  PubMed  CAS  Google Scholar 

  • Burton PB, Yacoub MH, Barton PJ (1999b) Cyclin-dependent kinase inhibitor expression in human heart failure. A comparison with fetal development. Eur Heart J 20:604–611

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Hinrichsen R (2003) Cyclin D in left ventricle hypertrophy. Cell Cycle 2:91–95

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336:220–225

    Article  PubMed  CAS  Google Scholar 

  • Choi WY, Poss KD (2012) Cardiac regeneration. Curr Top Dev Biol 100:319–344

    Article  PubMed  CAS  Google Scholar 

  • Claycomb WC (1988) Atrial-natriuretic-factor mRNA is developmentally regulated in heart ventricles and actively expressed in cultured ventricular cardiac muscle cells of rat and human. Biochem J 255:617–620

    PubMed  CAS  Google Scholar 

  • Conway SJ, Henderson DJ, Kirby ML, Anderson RH, Copp AJ (1997) Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse. Cardiovasc Res 36:163–173

    Article  PubMed  CAS  Google Scholar 

  • Cooke PS, Naaz A (2004) Role of estrogens in adipocyte development and function. Exp Biol Med (Maywood) 229:1127–1135

    CAS  Google Scholar 

  • D’Avino PP (2009) How to scaffold the contractile ring for a safe cytokinesis – lessons from Anillin-related proteins. J Cell Sci 122:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • D’Avino PP, Savoian MS, Glover DM (2005) Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. J Cell Sci 118:1549–1558

    Article  PubMed  CAS  Google Scholar 

  • de Boer BA, van den Berg G, de Boer PA, Moorman AF, Ruijter JM (2012) Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas. Dev Biol 368: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Dell’Amore A, Lanzanova G, Silenzi A, Lamarra M (2011) Hamartoma of mature cardiac myocytes: case report and review of the literature. Heart Lung Circ 20:336–340

    Article  PubMed  Google Scholar 

  • Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies PJ, Taegtmeyer H (1998) Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4:1269–1275

    Article  PubMed  CAS  Google Scholar 

  • Dorn GW 2nd, Robbins J, Sugden PH (2003) Phenotyping hypertrophy: eschew obfuscation. Circ Res 92:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, Harvey RP, Du XJ, Thorburn DR, Cox TC (2008) Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell 15:521–533

    Article  PubMed  CAS  Google Scholar 

  • Duensing S, Munger K (2002) Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene 21:6241–6248

    Article  PubMed  CAS  Google Scholar 

  • Duesberg P, Mandrioli D, McCormack A, Nicholson JM (2011) Is carcinogenesis a form of speciation? Cell Cycle 10:2100–2114

    Article  PubMed  CAS  Google Scholar 

  • Engel FB (2005) Cardiomyocyte proliferation: a platform for mammalian cardiac repair. Cell Cycle 4:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Engel FB, Hsieh PC, Lee RT, Keating MT (2006a) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103:15546–15551

    Article  PubMed  CAS  Google Scholar 

  • Engel FB, Schebesta M, Keating MT (2006b) Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 41:601–612

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381

    Article  PubMed  CAS  Google Scholar 

  • Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102: 686–694

    Article  PubMed  CAS  Google Scholar 

  • Fine LG, Norman JT (1992) Renal growth responses to acute and chronic injury: routes to therapeutic intervention. J Am Soc Nephrol 2:S206–S211

    PubMed  CAS  Google Scholar 

  • Fraticelli A, Josephson R, Danziger R, Lakatta E, Spurgeon H (1989) Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am J Physiol 257:H259–H265

    PubMed  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162

    Article  PubMed  CAS  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  PubMed  CAS  Google Scholar 

  • Gentric G, Desdouets C, Celton-Morizur S (2012) Hepatocytes polyploidization and cell cycle control in liver physiopathology. Int J Hepatol 2012:282430

    PubMed  Google Scholar 

  • Goranov AI, Cook M, Ricicova M, Ben-Ari G, Gonzalez C, Hansen C, Tyers M, Amon A (2009) The rate of cell growth is governed by cell cycle stage. Genes Dev 23:1408–1422

    Article  PubMed  CAS  Google Scholar 

  • Grabner W, Pfitzer P (1974) Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B Cell Pathol 15:279–294

    PubMed  CAS  Google Scholar 

  • Guidotti JE, Bregerie O, Robert A, Debey P, Brechot C, Desdouets C (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101

    Article  PubMed  CAS  Google Scholar 

  • Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Riviere AB, Doevendans PA, Field LJ (2008) Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res 78:18–25

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Davies TC, Anson-Cartwright L, Cross JC (2000) Periodic expression of the cyclin-dependent kinase inhibitor p57(Kip2) in trophoblast giant cells defines a G2-like gap phase of the endocycle. Mol Biol Cell 11:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Heinen A, Lehmann HC, Kury P (2012) Negative regulators of Schwann cell differentiation-novel targets for peripheral nerve therapies? J Clin Immunol 33:S18–S26

    Article  PubMed  Google Scholar 

  • Heng YW, Koh CG (2010) Actin cytoskeleton dynamics and the cell division cycle. Int J Biochem Cell Biol 42:1622–1633

    Article  PubMed  CAS  Google Scholar 

  • Herdrich BJ, Danzer E, Davey MG, Allukian M, Englefield V, Gorman JH 3rd, Gorman RC, Liechty KW (2010) Regenerative healing following foetal myocardial infarction. Eur J Cardiothorac Surg 38:691–698

    Article  PubMed  Google Scholar 

  • Hesse M, Raulf A, Pilz GA, Haberlandt C, Klein AM, Jabs R, Zaehres H, Fugemann CJ, Zimmermann K, Trebicka J, Welz A, Pfeifer A, Roll W, Kotlikoff MI, Steinhauser C, Gotz M, Scholer HR, Fleischmann BK (2012) Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat Commun 3:1076

    Article  PubMed  CAS  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487

    Article  PubMed  CAS  Google Scholar 

  • Horky M, Kuchtickova S, Vojtesek B, Kolar F (1997) Induction of cell-cycle inhibitor p21 in rat ventricular myocytes during early postnatal transition from hyperplasia to hypertrophy. Physiol Res 46:233–235

    PubMed  CAS  Google Scholar 

  • Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23:1024–1034

    Article  PubMed  CAS  Google Scholar 

  • Ikenishi A, Okayama H, Iwamoto N, Yoshitome S, Tane S, Nakamura K, Obayashi T, Hayashi T, Takeuchi T (2012) Cell cycle regulation in mouse heart during embryonic and postnatal stages. Dev Growth Differ 54:731–738

    Article  PubMed  CAS  Google Scholar 

  • Isoyama S, Wei JY, Izumo S, Fort P, Schoen FJ, Grossman W (1987) Effect of age on the development of cardiac hypertrophy produced by aortic constriction in the rat. Circ Res 61: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Isoyama S, Grossman W, Wei JY (1988) Effect of age on myocardial adaptation to volume overload in the rat. J Clin Invest 81:1850–1857

    Article  PubMed  CAS  Google Scholar 

  • Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y (2012) Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 139: 4133–4142

    Article  PubMed  CAS  Google Scholar 

  • Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 85:339–343

    Article  PubMed  CAS  Google Scholar 

  • Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, Swain JL (1990) The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 10:3709–3716

    PubMed  CAS  Google Scholar 

  • Jonker SS, Faber JJ, Anderson DF, Thornburg KL, Louey S, Giraud GD (2007a) Sequential growth of fetal sheep cardiac myocytes in response to simultaneous arterial and venous hypertension. Am J Physiol Regul Integr Comp Physiol 292:R913–R919

    Article  PubMed  CAS  Google Scholar 

  • Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ (2007b) Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol 102: 1130–1142

    Article  PubMed  Google Scholar 

  • Jonker SS, Giraud MK, Giraud GD, Chattergoon NN, Louey S, Davis LE, Faber JJ, Thornburg KL (2010) Cardiomyocyte enlargement, proliferation and maturation during chronic fetal anaemia in sheep. Exp Physiol 95:131–139

    Article  PubMed  Google Scholar 

  • Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Cheng W, Reiss K, Anversa P (1994) The IGF-1-IGF-1 receptor system modulates myocyte proliferation but not myocyte cellular hypertrophy in vitro. Exp Cell Res 215: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Pertoldi B, Leri A, Beltrami CA, Deptala A, Darzynkiewicz Z, Anversa P (2000) Telomere shortening is an in vivo marker of myocyte replication and aging. Am J Pathol 156: 813–819

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Rota M, Cappetta D, Ogorek B, Arranto C, Bai Y, Ferreira-Martins J, Signore S, Sanada F, Matsuda A, Kostyla J, Caballero MV, Fiorini C, D’Alessandro DA, Michler RE, del Monte F, Hosoda T, Perrella MA, Leri A, Buchholz BA, Loscalzo J, Anversa P (2012) Cardiomyogenesis in the aging and failing human heart. Circulation 126:1869–1881

    Article  PubMed  CAS  Google Scholar 

  • Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4:927–936

    Article  PubMed  CAS  Google Scholar 

  • Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:2727–2735

    Article  PubMed  Google Scholar 

  • Kikuchi K, Poss KD (2012) Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 28:719–741

    Article  PubMed  CAS  Google Scholar 

  • Kim HD, Kim DJ, Lee IJ, Rah BJ, Sawa Y, Schaper J (1992) Human fetal heart development after mid-term: morphometry and ultrastructural study. J Mol Cell Cardiol 24:949–965

    Article  PubMed  CAS  Google Scholar 

  • Kochilas LK, Li J, Jin F, Buck CA, Epstein JA (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45: 635–642

    Article  PubMed  CAS  Google Scholar 

  • Koh KN, Kang MJ, Frith-Terhune A, Park SK, Kim I, Lee CO, Koh GY (1998) Persistent and heterogenous expression of the cyclin-dependent kinase inhibitor, p27KIP1, in rat hearts during development. J Mol Cell Cardiol 30:463–474

    Article  PubMed  CAS  Google Scholar 

  • Konecny F, Zou J, Husain M, von Harsdorf R (2012) Post-myocardial infarct p27 fusion protein intravenous delivery averts adverse remodelling and improves heart function and survival in rodents. Cardiovasc Res 94:492–500

    Article  PubMed  CAS  Google Scholar 

  • Kramer A, Maier B, Bartek J (2011) Centrosome clustering and chromosomal (in)stability: a matter of life and death. Mol Oncol 5(4):324–335

    Article  PubMed  CAS  Google Scholar 

  • Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner H, Schimanski S, Szibor M, Warnecke H, Braun T (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9:420–432

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Brooks G (1997) Downregulation of cyclin-dependent kinase inhibitors p21 and p27 in pressure-overload hypertrophy. Am J Physiol 273:H1358–1367

    Google Scholar 

  • Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Li F, Wang X, Bunger PC, Gerdes AM (1997) Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J Mol Cell Cardiol 29:1541–1551

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Poolman RA, Brooks G (1998) Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol 275:H814–H822

    PubMed  CAS  Google Scholar 

  • Liao HS, Kang PM, Nagashima H, Yamasaki N, Usheva A, Ding B, Lorell BH, Izumo S (2001) Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 88:443–450

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Preisig PA (2002) Compensatory renal hypertrophy is mediated by a cell cycle-dependent mechanism. Kidney Int 62:1650–1658

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, Poss KD, Mikawa T, Stainier DY (2010a) A dual role for ErbB2 signaling in cardiac trabeculation. Development 137:3867–3875

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yue S, Chen X, Kubin T, Braun T (2010b) Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ Res 106:1498–1506

    Article  PubMed  CAS  Google Scholar 

  • Lui JC, Baron J (2011) Mechanisms limiting body growth in mammals. Endocr Rev 32:422–440

    Article  PubMed  CAS  Google Scholar 

  • Machackova J, Barta J, Dhalla NS (2006) Myofibrillar remodeling in cardiac hypertrophy, heart failure and cardiomyopathies. Can J Cardiol 22:953–968

    Article  PubMed  Google Scholar 

  • MacLellan WR, Schneider MD (2000) Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 62:289–319

    Article  PubMed  CAS  Google Scholar 

  • Margall-Ducos G, Celton-Morizur S, Couton D, Bregerie O, Desdouets C (2007) Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J Cell Sci 120:3633–3639

    Article  PubMed  CAS  Google Scholar 

  • Martin-Puig S, Wang Z, Chien KR (2008) Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2:320–331

    Article  PubMed  CAS  Google Scholar 

  • Matz DG, Oberpriller JO, Oberpriller JC (1998) Comparison of mitosis in binucleated and mononucleated newt cardiac myocytes. Anat Rec 251:245–255

    Article  PubMed  CAS  Google Scholar 

  • Meckert PC, Rivello HG, Vigliano C, Gonzalez P, Favaloro R, Laguens R (2005) Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res 67:116–123

    Article  PubMed  CAS  Google Scholar 

  • Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas JF, Buckingham ME (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889

    Article  PubMed  CAS  Google Scholar 

  • Mercola M (2012) Cardiovascular biology: a boost for heart regeneration. Nature 492:360–362

    Article  PubMed  CAS  Google Scholar 

  • Nagahama H, Hatakeyama S, Nakayama K, Nagata M, Tomita K, Nakayama K (2001) Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat Embryol (Berl) 203:77–87

    Article  CAS  Google Scholar 

  • Nagata Y, Jones MR, Nguyen HG, McCrann DJ, St Hilaire C, Schreiber BM, Hashimoto A, Inagaki M, Earnshaw WC, Todokoro K, Ravid K (2005) Vascular smooth muscle cell polyploidization involves changes in chromosome passenger proteins and an endomitotic cell cycle. Exp Cell Res 305:277–291

    Article  PubMed  CAS  Google Scholar 

  • Neri T, Stefanovic S, Puceat M (2010) Cardiac regeneration: still a 21st century challenge in search for cardiac progenitors from stem cells and embryos. J Cardiovasc Pharmacol 56:16–21

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Novoyatleva T, Diehl F, van Amerongen MJ, Patra C, Ferrazzi F, Bellazzi R, Engel FB (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85:681–690

    Article  PubMed  CAS  Google Scholar 

  • Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28:1463–1477

    Article  PubMed  CAS  Google Scholar 

  • Owens GK, Schwartz SM (1983) Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res 53:491–501

    Article  PubMed  CAS  Google Scholar 

  • Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90:1044–1054

    Article  PubMed  CAS  Google Scholar 

  • Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118

    Article  PubMed  CAS  Google Scholar 

  • Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG (2009) p57KIP2: “Kip”ing the cell under control. Mol Cancer Res 7:1902–1919

    Article  PubMed  CAS  Google Scholar 

  • Pellettieri J, Sanchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105

    Article  PubMed  CAS  Google Scholar 

  • Piekny AJ, Maddox AS (2010) The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol 21:881–891

    Article  PubMed  CAS  Google Scholar 

  • Poling J, Gajawada P, Lorchner H, Polyakova V, Szibor M, Bottger T, Warnecke H, Kubin T, Braun T (2012) The Janus face of OSM-mediated cardiomyocyte dedifferentiation during cardiac repair and disease. Cell Cycle 11:439–445

    Article  PubMed  CAS  Google Scholar 

  • Poolman RA, Gilchrist R, Brooks G (1998) Cell cycle profiles and expressions of p21CIP1 AND P27KIP1 during myocyte development. Int J Cardiol 67:133–142

    Article  PubMed  CAS  Google Scholar 

  • Poolman RA, Li JM, Durand B, Brooks G (1999) Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27KIP1 knockout mice. Circ Res 85: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  PubMed  CAS  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2012) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 110:187–192

    Article  PubMed  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  PubMed  CAS  Google Scholar 

  • Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307:127–129

    Article  PubMed  CAS  Google Scholar 

  • Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  PubMed  CAS  Google Scholar 

  • Reinecke H, Minami E, Zhu WZ, Laflamme MA (2008) Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res 103:1058–1071

    Article  PubMed  CAS  Google Scholar 

  • Roh HS, Lee HE, Park MH, Ko JY, Ro YS (2011) Subcutaneous myxoid and round cell liposarcoma. Ann Dermatol 23:338–341

    Article  PubMed  Google Scholar 

  • Rothen-Rutishauser BM, Ehler E, Perriard E, Messerli JM, Perriard JC (1998) Different behaviour of the non-sarcomeric cytoskeleton in neonatal and adult rat cardiomyocytes. J Mol Cell Cardiol 30:19–31

    Article  PubMed  CAS  Google Scholar 

  • Roussel MF (1999) The INK4 family of cell cycle inhibitors in cancer. Oncogene 18:5311–5317

    Article  PubMed  CAS  Google Scholar 

  • Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 51:186–273

    PubMed  CAS  Google Scholar 

  • Russell P, Hennessy BT, Li J, Carey MS, Bast RC, Freeman T, Venkitaraman AR (2012) Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Oncogene 31: 2450–2460

    Article  PubMed  CAS  Google Scholar 

  • Ruster C, Bondeva T, Franke S, Forster M, Wolf G (2008) Advanced glycation end-products induce cell cycle arrest and hypertrophy in podocytes. Nephrol Dial Transplant 23:2179–2191

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Peraud A, Mainprize T, Nakayama J, Tsugu A, Hongo K, Kobayashi S, Rutka JT (2004) Inducible expression of p57KIP2 inhibits glioma cell motility and invasion. J Neurooncol 68: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Schmid G, Pfitzer P (1985) Mitoses and binucleated cells in perinatal human hearts. Virchows Arch B Cell Pathol Incl Mol Pathol 48:59–67

    Article  PubMed  CAS  Google Scholar 

  • Schnabel K, Wu CC, Kurth T, Weidinger G (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6:e18503

    Article  PubMed  CAS  Google Scholar 

  • Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2012) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Siedner S, Kruger M, Schroeter M, Metzler D, Roell W, Fleischmann BK, Hescheler J, Pfitzer G, Stehle R (2003) Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol 548:493–505

    Article  PubMed  CAS  Google Scholar 

  • Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    Article  PubMed  CAS  Google Scholar 

  • Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:H2183–H2189

    PubMed  CAS  Google Scholar 

  • Soonpaa MH, Rubart M, Field LJ (2012) Challenges measuring cardiomyocyte renewal. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2012.10.029

    PubMed  Google Scholar 

  • Soufan AT, van den Berg G, Ruijter JM, de Boer PA, van den Hoff MJ, Moorman AF (2006) Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 99:545–552

    Article  PubMed  CAS  Google Scholar 

  • Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S, Gerlich DW (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136:473–484

    Article  PubMed  CAS  Google Scholar 

  • Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188:191–198

    Article  PubMed  CAS  Google Scholar 

  • Tamamori M, Ito H, Hiroe M, Terada Y, Marumo F, Ikeda MA (1998) Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. Am J Physiol 275:H2036–H2040

    PubMed  CAS  Google Scholar 

  • Thornburg K, Jonker S, O’Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106:289–299

    Article  PubMed  CAS  Google Scholar 

  • Toyofuku T, Zhang H, Kumanogoh A, Takegahara N, Yabuki M, Harada K, Hori M, Kikutani H (2004) Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat Cell Biol 6:1204–1211

    Article  PubMed  CAS  Google Scholar 

  • Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951

    Article  PubMed  CAS  Google Scholar 

  • van Amerongen MJ, Engel FB (2008) Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med 12:2233–2244

    Article  PubMed  Google Scholar 

  • van den Hoff MJ, Deprez RH, Monteiro M, de Boer PA, Charles R, Moorman AF (1997) Developmental changes in rat cardiac DNA, RNA and protein tissue base: implications for the interpretation of changes in gene expression. J Mol Cell Cardiol 29:629–639

    Article  PubMed  Google Scholar 

  • van der Waal MS, Hengeveld RC, van der Horst A, Lens SM (2012) Cell division control by the chromosomal passenger complex. Exp Cell Res 318:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Vidal A, Koff A (2000) Cell-cycle inhibitors: three families united by a common cause. Gene 247:1–15

    Article  PubMed  CAS  Google Scholar 

  • von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 109:2394–2399

    Article  Google Scholar 

  • Wadugu B, Kuhn B (2012) The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 302:H2139–H2147

    Article  PubMed  CAS  Google Scholar 

  • Walsh S, Ponten A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo – an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Hu SM (1991) Developmental regulation in the expression of rat heart glucose transporters. Biochem Biophys Res Commun 177:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Panakova D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138:3421–3430

    Article  PubMed  CAS  Google Scholar 

  • Wills AA, Holdway JE, Major RJ, Poss KD (2008) Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135:183–192

    Article  PubMed  CAS  Google Scholar 

  • Xiao G, Mao S, Baumgarten G, Serrano J, Jordan MC, Roos KP, Fishbein MC, MacLellan WR (2001) Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 89:1122–1129

    Article  PubMed  CAS  Google Scholar 

  • Zhong W, Mao S, Tobis S, Angelis E, Jordan MC, Roos KP, Fishbein MC, de Alboran IM, MacLellan WR (2006) Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2-dependent pathway. EMBO J 25:3869–3879

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Hassink RJ, Rubart M, Field LJ (2009) Cell-cycle-based strategies to drive myocardial repair. Pediatr Cardiol 30:710–715

    Article  PubMed  Google Scholar 

  • Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15: 203–211

    Article  PubMed  CAS  Google Scholar 

  • Zybina TG, Frank HG, Biesterfeld S, Kaufmann P (2004) Genome multiplication of extravillous trophoblast cells in human placenta in the course of differentiation and invasion into endometrium and myometrium. II. Mechanisms of polyploidization. Tsitologiia 46:640–648

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt Foundation (Sofja Kovalevskaja Award to F.B.E.) and the DFG (EN 453/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix B. Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zebrowski, D.C., Engel, F.B. (2013). The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration. In: Nilius, B., et al. Reviews of Physiology, Biochemistry and Pharmacology, Vol. 165. Reviews of Physiology, Biochemistry and Pharmacology, vol 165. Springer, Cham. https://doi.org/10.1007/112_2013_12

Download citation

Publish with us

Policies and ethics