Skip to main content

Lipid homeostasis in macrophages – Implications for atherosclerosis

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 160))

Abstract

In industrialized societies with excess food supply, obesity is an expanding problem. As a result of metabolic overload, besides obesity, insulin resistance, type-2 diabetes, dyslipidemia, hypertension, and atherosclerosis develop, which together make up the metabolic syndrome. The imbalance of lipid uptake, metabolism, and removal in many organs such as the liver, muscle, adipose tissue, vessel wall, and macrophages triggers organ transdifferentiation toward lipid storage phenotypes. Macrophages, foam cells, and osteoclasts in calcifying lesions are a hallmark of atherosclerosis and the metabolic syndrome, and must be regarded as an important therapeutic target. In this review, pathways regulating lipid homeostasis in macrophages are updated. These include lipid influx through different receptor entry pathways, the role of membrane microdomains, endolysosomal and cytosolic lipid storage leading to phospholipidosis, and lipid droplet accumulation or activation of lipid efflux either through the Golgi system or bypassing this organelle on the way to the plasma membrane. The interdependence of these pathways and pharmacological modifications are described. The monocyte innate immunity receptor complex in defining monocyte subpopulations and their role in cardiovascular disease is taken into account. The composition of certain molecular lipid species in membrane microdomains and other organelles is essential for cellular functions affecting raft dynamics, signal transduction, and membrane and organelle trafficking. It is very likely that the underlying defects in lipid-associated rare genetic diseases such as ABCA1 deficiency, Niemann–Pick disease type C, as well as the more frequent complex disorders associated with atherosclerosis and phospholipidosis are related to disturbances in membrane homeostasis, signal transduction, and cellular lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCA1:

ATP binding cassette transporter A1

ABCG1:

ATP binding cassette transporter G1

ACAT1:

Acyl-coenzyme A:cholesterol acyltransferase 1

AGE:

Advanced glycation end product

Apo:

Apolipoprotein

ARF:

ADP-ribosylation factor (ARF)-like

CAD:

Coronary artery disease

CETP:

Cholesteryl ester transfer protein

CR:

Complement receptor

CRP:

C-reactive protein

CSF-1:

Colony-stimulating factor-1

DRM:

Detergent resistant membrane

E-LDL:

Enzymatically degraded LDL

ER:

Endoplasmatic reticulum

FADD:

Fas-associated death domain

FCDR-assay:

Flow cytometric differential detergent resistance assay

FRET:

Fluorescence resonance energy transfer

FcγR:

Fcγ receptor

GPI:

Glycosylphosphatidylinositol

HDL:

High-density lipoproteins

HMG-CoA:

3-Hydroxy-3-methylglutaryl coenzyme A

ITAM:

Immunoreceptor tyrosine-based activation motifs

ITIM:

Immunoreceptor tyrosine-based inhibition motifs

LDL:

Low-density lipoproteins

LOX-1:

Lectin-like Ox-LDL receptor

LPS:

Lipopolysaccharide

LXR:

Liver X receptor

MARCO:

Macrophage scavenger receptor with collagenous structure

MPO-LDL:

Myeloperoxidase oxidized LDL

mTOR:

Mammalian target of rapamycin

NPC1:

Niemann–Pick disease C1

Ox-LDL:

Oxidized LDL

PPAR:

Peroxisome proliferators-activated receptor

PPRE:

Peroxisome proliferation response element

RAGE:

Receptor for advanced glycation end-products

RXR:

Retinoid X receptor

SCAP:

SREBP-cleavage activation protein

SIRS:

Systemic inflammatory response syndrome

SR-BI:

Scavenger receptor BI

SREBP:

Sterol regulatory element binding protein

SREC:

Scavenger receptor expressed by endothelial cells

SR-PSOX:

Scavenger receptor for phosphatidylserine and oxidized lipoprotein

References

  • Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24:1161–1170

    PubMed  CAS  Google Scholar 

  • Anderson N, Borlak J (2006) Drug-induced phospholipidosis. FEBS Lett 580:5533–5540

    PubMed  CAS  Google Scholar 

  • Arakawa R, Abe-Dohmae S, Asai M, et al. (2000) Involvement of caveolin-1 in cholesterol enrichment of high density lipoprotein during its assembly by apolipoprotein and THP-1 cells. J Lipid Res 41:1952–1962

    PubMed  CAS  Google Scholar 

  • Avart SJ, Bernard DW, Jerome WG et al. (1999) Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes. J Lipid Res 40:405–414

    PubMed  CAS  Google Scholar 

  • Bared SM, Buechler C, Boettcher A, et al. (2004) Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells. Mol Biol Cell 15:5399–5407

    PubMed  CAS  Google Scholar 

  • Beisiegel U, Weber W, Havinga JR et al. (1988) Apolipoprotein E-binding proteins isolated from dog and human liver. Arteriosclerosis 8:288–297

    PubMed  CAS  Google Scholar 

  • Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20:707–727

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Dorweiler B, Kirchmann R, et al. (1995) On the pathogenesis of atherosclerosis: enzymatic transformation of human low density lipoprotein to an atherogenic moiety. J Exp Med 182:1959–1971

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Torzewski M, Klouche M, et al. (1999) Complement and atherogenesis: binding of CRP to degraded, nonoxidized LDL enhances complement activation. Arterioscler Thromb Vasc Biol 19:2348–2354

    PubMed  CAS  Google Scholar 

  • Binder CJ, Hartvigsen K, Chang MK, et al. (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114:427–437

    PubMed  CAS  Google Scholar 

  • Binder M, Liebisch G, Langmann T, et al. (2006) Metabolic profiling of glycerophospholipid synthesis in fibroblasts loaded with free cholesterol and modified low density lipoproteins. J Biol Chem 281:21869–21877

    PubMed  CAS  Google Scholar 

  • Bodzioch M, Orso E, Klucken J, et al. (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    PubMed  CAS  Google Scholar 

  • Boyle JJ (2005) Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol 3:63–68

    PubMed  CAS  Google Scholar 

  • Bozza PT, Bandeira-Melo C (2005) Mechanisms of leukocyte lipid body formation and function in inflammation. Mem Inst Oswaldo Cruz 100(Suppl 1):113–120

    PubMed  CAS  Google Scholar 

  • Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    PubMed  CAS  Google Scholar 

  • Brasaemle DL, Levin DM, Adler-Wailes DC, et al. (2000) The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta 1483:251–262

    PubMed  CAS  Google Scholar 

  • Brooks-Wilson A, Marcil M, Clee SM, et al. (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96:11041–11048

    PubMed  CAS  Google Scholar 

  • Buechler C, Bared SM, Aslanidis C, et al. (2002a) Molecular and functional interaction of the ATP-binding cassette transporter A1 with Fas-associated death domain protein. J Biol Chem 277:41307–41310

    PubMed  CAS  Google Scholar 

  • Buechler C, Boettcher A, Bared SM, et al. (2002b) The carboxyterminus of the ATP-binding cassette transporter A1 interacts with a beta2-syntrophin/utrophin complex. Biochem Biophys Res Commun 293:759–765

    PubMed  CAS  Google Scholar 

  • Buechler C, Ritter M, Duong CQ, et al. (2001) Adipophilin is a sensitive marker for lipid loading in human blood monocytes. Biochim Biophys Acta 1532:97–104

    PubMed  CAS  Google Scholar 

  • Butters TD (2007) Gaucher disease. Curr Opin Chem Biol 11:412–418

    PubMed  CAS  Google Scholar 

  • Cathcart MK, Morel DW, Chisolm GM III. (1985) Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol 38:341–350

    PubMed  CAS  Google Scholar 

  • Chao FF, Blanchette-Mackie EJ, et al. (1992) Hydrolysis of cholesteryl ester in low density lipoprotein converts this lipoprotein to a liposome. J Biol Chem 267:4992–4998

    PubMed  CAS  Google Scholar 

  • Chawla A, Barak Y, Nagy L, et al. (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52

    PubMed  CAS  Google Scholar 

  • Chawla A, Lee CH, Barak Y, et al. (2003) PPARdelta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273

    PubMed  CAS  Google Scholar 

  • Chen W, Sun Y, Welch C, et al. (2001) Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 276:43564–43569

    PubMed  CAS  Google Scholar 

  • Cheng ZJ, Singh RD, Sharma DK, et al. (2006) Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell 17:3197–3210

    PubMed  CAS  Google Scholar 

  • Chinetti G, Gbaguidi FG, Griglio S, et al. (2000) CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation 101:2411–2417

    PubMed  CAS  Google Scholar 

  • Chinetti G, Lestavel S, Bocher V, et al. (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58

    PubMed  CAS  Google Scholar 

  • Choudhury A, Dominguez M, Puri V, et al. (2002) Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann–Pick C cells. J Clin Invest 109:1541–1550

    PubMed  CAS  Google Scholar 

  • Clarke JT (2007) Narrative review: Fabry disease. Ann Intern Med 146:425–433

    PubMed  Google Scholar 

  • Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518

    PubMed  CAS  Google Scholar 

  • Crisby M, Nordin-Fredriksson G, Shah PK, et al. (2001) Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 103:926–933

    PubMed  CAS  Google Scholar 

  • Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77

    PubMed  Google Scholar 

  • Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234

    PubMed  CAS  Google Scholar 

  • Devaraj S, Rogers J, Jialal I (2007) Statins and biomarkers of inflammation. Curr Atheroscler Rep 9:33–41

    PubMed  CAS  Google Scholar 

  • Diederich W, Orso E, Drobnik W, et al. (2001) Apolipoprotein AI and HDL(3) inhibit spreading of primary human monocytes through a mechanism that involves cholesterol depletion and regulation of CDC42. Atherosclerosis 159:313–324

    PubMed  CAS  Google Scholar 

  • Dorn BR, Dunn WA Jr., Progulske-Fox A (2002) Bacterial interactions with the autophagic pathway. Cell Microbiol 4:1–10

    PubMed  CAS  Google Scholar 

  • Drobnik W, Borsukova H, Bottcher A, et al. (2002) Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic 3:268–278

    PubMed  Google Scholar 

  • Ecker J, Langmann T, Moehle C, et al. (2007) Isomer specific effects of Conjugated Linoleic Acid on macrophage ABCG1 transcription by a SREBP-1c dependent mechanism. Biochem Biophys Res Commun 352:805–811

    PubMed  CAS  Google Scholar 

  • Engel T, Lueken A, Bode G, et al. (2004) ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett 566:241–246

    PubMed  CAS  Google Scholar 

  • Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    PubMed  CAS  Google Scholar 

  • Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160

    PubMed  CAS  Google Scholar 

  • Farnier M (2007) Setting a new standard in achieving superior efficacy: ezetimibe + simvastatin. Fundam Clin Pharmacol 21(Suppl 2):27–28

    PubMed  CAS  Google Scholar 

  • Fazio S, Linton M (2006) Failure of ACAT inhibition to retard atherosclerosis. N Engl J Med 354:1307–1309

    PubMed  CAS  Google Scholar 

  • Fazio S, Major AS, Swift LL, et al. (2001) Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 107:163–171

    PubMed  CAS  Google Scholar 

  • Fonseca VA (2007) Early identification and treatment of insulin resistance: impact on subsequent prediabetes and type 2 diabetes. Clin Cornerstone 8(Suppl 7):S7–18

    PubMed  Google Scholar 

  • Forman BM, Tontonoz P, Chen J, et al. (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812

    PubMed  CAS  Google Scholar 

  • Fu X, Menke JG, Chen Y, et al. (2001) 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 276:38378–38387

    PubMed  CAS  Google Scholar 

  • Garner B, Mellor HR, Butters TD, et al. (2002) Modulation of THP-1 macrophage and cholesterol-loaded foam cell apolipoprotein E levels by glycosphingolipids. Biochem Biophys Res Commun 290:1361–1367

    PubMed  CAS  Google Scholar 

  • Gaus K, Gooding JJ, Dean RT, et al. (2001) A kinetic model to evaluate cholesterol efflux from THP-1 macrophages to apolipoprotein A-1. Biochemistry 40:9363–9373

    PubMed  CAS  Google Scholar 

  • Gelissen IC, Brown AJ, Mander EL, et al. (1996) Sterol efflux is impaired from macrophage foam cells selectively enriched with 7-ketocholesterol. J Biol Chem 271:17852–17860

    PubMed  CAS  Google Scholar 

  • Gelissen IC, Rye KA, Brown AJ, et al. (1999) Oxysterol efflux from macrophage foam cells: the essential role of acceptor phospholipid. J Lipid Res 40:1636–1646

    PubMed  CAS  Google Scholar 

  • Glaros EN, Kim WS, Quinn CM, et al. (2005) Glycosphingolipid accumulation inhibits cholesterol efflux via the ABCA1/apolipoprotein A-I pathway: 1-phenyl-2-decanoylamino-3-morpholino-1-propanol is a novel cholesterol efflux accelerator. J Biol Chem 280:24515–24523

    PubMed  CAS  Google Scholar 

  • Godson C, Mitchell S, Harvey K, et al. (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164:1663–1667

    PubMed  CAS  Google Scholar 

  • Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46

    PubMed  CAS  Google Scholar 

  • Gombos I, Bacso Z, Detre C, et al. (2004) Cholesterol sensitivity of detergent resistance: a rapid flow cytometric test for detecting constitutive or induced raft association of membrane proteins. Cytometry A 61:117–126

    PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    PubMed  CAS  Google Scholar 

  • Grage-Griebenow E, Flad HD, Ernst M (2001) Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69(1):11–20

    PubMed  CAS  Google Scholar 

  • Grage-Griebenow E, Flad HD, Ernst M, et al. (2000) Human MO subsets as defined by expression of CD64 and CD16 differ in phagocytic activity and generation of oxygen intermediates. Immunobiology 202:42–50

    PubMed  CAS  Google Scholar 

  • Grage-Griebenow E, Lorenzen D, Fetting R, et al. (1993) Phenotypical and functional characterization of Fc gamma receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. Eur J Immunol 23:3126–3135

    PubMed  CAS  Google Scholar 

  • Grand-Perret T, Bouillot A, Perrot A, et al. (2001) SCAP ligands are potent new lipid-lowering drugs. Nat Med 7:1332–1338

    PubMed  CAS  Google Scholar 

  • Grandl M, Bared S M, Liebisch G, et al. (2006) E-LDL and Ox-LDL differentially regulate ceramide and cholesterol raft microdomains in human Macrophages. Cytometry A 69:189–191

    PubMed  Google Scholar 

  • Grimmer S, van Deurs B, Sandvig K (2002) Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci 115(Pt 14):2953–2962

    PubMed  CAS  Google Scholar 

  • Guyton JR (2007) Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr Opin Lipidol 18:415–420

    PubMed  CAS  Google Scholar 

  • Guyton JR, Capuzzi DM (1998) Treatment of hyperlipidemia with combined niacin-statin regimens. Am J Cardiol 82:82U–84U

    PubMed  CAS  Google Scholar 

  • Hajjar DP, Weksler BB, Falcone DJ, et al. (1982) Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine monophosphate in rabbit aortic smooth muscle cells. J Clin Invest 70:479–488

    PubMed  CAS  Google Scholar 

  • Hakala JK, Oksjoki R, Laine P, et al. (2003) Lysosomal enzymes are released from cultured human macrophages, hydrolyze LDL in vitro, and are present extracellularly in human atherosclerotic lesions. Arterioscler ThrombArterioscler Thromb Vasc Biol 23:1430–1436

    CAS  Google Scholar 

  • Halliwell WH (1997) Cationic amphiphilic drug-induced phospholipidosis. Toxicol Pathol 25:53–60

    PubMed  CAS  Google Scholar 

  • Hara H, Yokoyama S (1991) Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem 266:3080–3086

    PubMed  CAS  Google Scholar 

  • Hodge S,Hodge G, Brozyna S, et al. (2006) Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J 28:486–495

    PubMed  CAS  Google Scholar 

  • Horkko S, Binder CJ, Shaw PX, et al. (2000) Immunological responses to oxidized LDL. Free Radic Biol Med 28:1771–1779

    PubMed  CAS  Google Scholar 

  • Horkko S, Bird DA, Miller E, et al. (1999) Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 103:117–128

    PubMed  CAS  Google Scholar 

  • Huang JT, Welch J S, Ricote M, et al. (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400:378–382

    PubMed  CAS  Google Scholar 

  • Huang L, Kuo YM, Gitschier J (1999) The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nat Genet 23:329–332

    PubMed  CAS  Google Scholar 

  • Hubacek JA, Rothe G, Pit'ha J, et al. (1999) C(-260)-->T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation 99:3218–3220

    PubMed  CAS  Google Scholar 

  • Huwiler A, Kolter T, Pfeilschifter J, et al. (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485:63–99

    PubMed  CAS  Google Scholar 

  • Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Mol CellNat Rev Mol Cell Biol 9:125–138

    CAS  Google Scholar 

  • Ioannou YA (2001) Multidrug permeases and subcellular cholesterol transport. Mol CellNat Rev Mol Cell Biol 2:657–668

    CAS  Google Scholar 

  • Itabe H, Takeshima E, Iwasaki H, et al. (1994) A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem 269:15274–15279

    PubMed  CAS  Google Scholar 

  • Itabe H, Yamamoto H, Imanaka T, et al. (1996) Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res 37:45–53

    PubMed  CAS  Google Scholar 

  • Jessup W, Gelissen IC, Gaus K, et al. (2006) Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 17:247–257

    PubMed  CAS  Google Scholar 

  • Jessup W, Kritharides L, Stocker R (2004) Lipid oxidation in atherogenesis: an overview. Biochem Soc Trans 32(Pt 1):134–138

    PubMed  CAS  Google Scholar 

  • Jessup W, Wilson P, Gaus K, et al. (2002) Oxidized lipoproteins and macrophages. Vascul Pharmacol 38:239–248

    PubMed  CAS  Google Scholar 

  • Jia G, Cheng G, Agrawal DK (2007) Autophagy of vascular smooth muscle cells in atherosclerotic lesions. Autophagy 3:63–64

    PubMed  CAS  Google Scholar 

  • Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    PubMed  CAS  Google Scholar 

  • Jin FY, Kamanna VS, Kashyap ML (1999) Niacin accelerates intracellular ApoB degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2) cells. Arterioscler ThrombArterioscler Thromb Vasc Biol 19:1051–1059

    CAS  Google Scholar 

  • Joseph SB, Castrillo A, Laffitte BA, et al. (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    PubMed  CAS  Google Scholar 

  • Kalaany NY, Mangelsdorf DJ (2006) LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 68:159–191

    PubMed  CAS  Google Scholar 

  • Kannan R, Sarma JS, Guha M, et al. (1991) Amiodarone toxicity. II. Desethylamiodarone-induced phospholipidosis and ultrastructural changes during repeated administration in rats. Fundam Appl Toxicol 16:103–109

    PubMed  CAS  Google Scholar 

  • Kapinsky M, Torzewski M, Buchler C, et al. (2001) Enzymatically degraded LDL preferentially binds to CD14(high) CD16(+) monocytes and induces foam cell formation mediated only in part by the class B scavenger-receptor CD36. Arterioscler ThrombArterioscler Thromb Vasc Biol 21:1004–1010

    CAS  Google Scholar 

  • Kilsdonk EP, Morel DW, Johnson WJ, et al. (1995) Inhibition of cellular cholesterol efflux by 25-hydroxycholesterol. J Lipid Res 36:505–516

    PubMed  CAS  Google Scholar 

  • Kirchhoff C, Osterhoff C, Young L (1996) Molecular cloning and characterization of HE1, a major secretory protein of the human epididymis. Biol Reprod 54:847–856

    PubMed  CAS  Google Scholar 

  • Kita T, Ishii K, Yokode M, et al. (1990) The role of oxidized low density lipoprotein in the pathogenesis of atherosclerosis. Eur Heart J 11(Suppl E):122–127

    PubMed  CAS  Google Scholar 

  • Kliewer SA, Lenhard JM, Willson TM, et al. (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819

    PubMed  CAS  Google Scholar 

  • Klouche M, Gottschling S, Gerl V, et al. (1998) Atherogenic properties of enzymatically degraded LDL: selective induction of MCP-1 and cytotoxic effects on human macrophages. Arterioscler ThrombArterioscler Thromb Vasc Biol 18:1376–1385

    CAS  Google Scholar 

  • Klouche M, May A E, Hemmes M, et al. (1999) Enzymatically modified, nonoxidized LDL induces selective adhesion and transmigration of monocytes and T-lymphocytes through human endothelial cell monolayers. Arterioscler ThrombArterioscler Thromb Vasc Biol 19:784–793

    CAS  Google Scholar 

  • Klouche M, Rose-John S, Schmiedt W, et al. (2000) Enzymatically degraded, nonoxidized LDL induces human vascular smooth muscle cell activation, foam cell transformation, and proliferation. Circulation 101:1799–1805

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Beuchat MH, Lindsay M, et al. (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1:113–118

    PubMed  CAS  Google Scholar 

  • Kodavanti UP, Mehendale HM (1990) Cationic amphiphilic drugs and phospholipid storage disorder. Pharmacol Rev 42:327–354

    PubMed  CAS  Google Scholar 

  • Kolesnick RN (1991) Sphingomyelin and derivatives as cellular signals. Prog Lipid Res 30:1–38

    PubMed  CAS  Google Scholar 

  • Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300

    PubMed  CAS  Google Scholar 

  • Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: Stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103

    PubMed  CAS  Google Scholar 

  • Koyama H, Yamamoto H, Nishizawa Y (2007) RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases. Mol Med 13:625–635

    PubMed  CAS  Google Scholar 

  • Kritharides L, Jessup W, Mander EL, et al. (1995) Apolipoprotein A-I-mediated efflux of sterols from oxidized LDL-loaded macrophages. Arterioscler ThrombArterioscler Thromb Vasc Biol 15:276–289

    CAS  Google Scholar 

  • Kruth HS (1984) Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol 114:201–208

    PubMed  CAS  Google Scholar 

  • Kubota N, Terauchi Y, Miki H, et al. (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4:597–609

    PubMed  CAS  Google Scholar 

  • Kundu M, Thompson CB (2007) Autophagy: basic principles and relevance to disease. Annu Rev Pathol

    Google Scholar 

  • Laffitte BA, Repa JJ, Joseph SB, et al. (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 98:507–512

    PubMed  CAS  Google Scholar 

  • Langmann T, Liebisch G, Moehle C, et al. (2005) Gene expression profiling identifies retinoids as potent inducers of macrophage lipid efflux. Biochim Biophys Acta 1740:155–161

    PubMed  CAS  Google Scholar 

  • Le BI, Luyet PP, Pons V, et al. (2005) Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 7:653–664

    Google Scholar 

  • Le CV, Carreno S, Moisand A, et al. (2002) Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J Immunol 169:2003–2009

    Google Scholar 

  • Li W, Xu LH, Yuan XM (2004) Macrophage hemoglobin scavenger receptor and ferritin accumulation in human atherosclerotic lesions. Ann NY Acad Sci 1030:196–201

    PubMed  CAS  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    PubMed  CAS  Google Scholar 

  • Liebisch G, Binder M, Schifferer R, et al. (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761:121–128

    PubMed  CAS  Google Scholar 

  • Liebisch G, Lieser B, Rathenberg J, et al. (2004) High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim Biophys Acta 1686:108–117

    PubMed  CAS  Google Scholar 

  • Lusa S, Blom TS, Eskelinen EL, et al. (2001) Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J Cell Sci 114(Pt 10):1893–1900

    PubMed  CAS  Google Scholar 

  • Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151

    PubMed  CAS  Google Scholar 

  • Martinet W, De Bie M, Schrijvers DM, et al. (2004) 7-ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler ThrombArterioscler Thromb Vasc Biol 24:2296–2301

    CAS  Google Scholar 

  • Martinez LO, Jacquet S, Esteve JP, et al. (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421:75–79

    PubMed  CAS  Google Scholar 

  • Marx N, Schonbeck U, Lazar MA, et al. (1998a) Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 83:1097–1103

    PubMed  CAS  Google Scholar 

  • Marx N, Sukhova G, Murphy C, et al. (1998b) Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma(PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 153:17–23

    PubMed  CAS  Google Scholar 

  • Matsuo H, Chevallier J, Mayran N, et al. (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303:531–534

    PubMed  CAS  Google Scholar 

  • McCloud CM, Beard T L, Kacew S, et al. (1995) In vivo and in vitro reversibility of chlorphentermine-induced phospholipidosis in rat alveolar macrophages. Exp Mol Pathol 62:12–21

    PubMed  CAS  Google Scholar 

  • Megha, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004

    PubMed  CAS  Google Scholar 

  • Mendez AJ, Lin G, Wade DP, et al. (2001) Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem 276:3158–3166

    PubMed  CAS  Google Scholar 

  • Merkel KD, Erdmann JM, McHugh KP, et al. (1999) Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol 154:203–210

    PubMed  CAS  Google Scholar 

  • Michalik L, Desvergne B, Tan NS, et al. (2001) Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice. J Cell Biol 154:799–814

    PubMed  CAS  Google Scholar 

  • Miller YI, Chang MK, Binder CJ, et al. (2003a) Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol 14:437–445

    PubMed  CAS  Google Scholar 

  • Miller YI, Viriyakosol S, Binder CJ, et al. (2003b) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 278:1561–1568

    PubMed  CAS  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429

    PubMed  Google Scholar 

  • Morimoto K, Janssen WJ, Fessler MB, et al. (2006) Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J Immunol 176:7657–7665

    PubMed  CAS  Google Scholar 

  • Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677

    PubMed  CAS  Google Scholar 

  • Nagy L, Tontonoz P, Alvarez JG, et al. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    PubMed  CAS  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST, et al. (2004a) Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 109:3215–3220

    PubMed  CAS  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST, et al. (2004b) Human apolipoprotein A-I and A-I mimetic peptides: potential for atherosclerosis reversal. Curr Opin Lipidol 15:645–649

    PubMed  CAS  Google Scholar 

  • Navab M, Fogelman AM, Berliner JA, et al. (1995) Pathogenesis of atherosclerosis. Am J Cardiol 76:18C–23C

    PubMed  CAS  Google Scholar 

  • Neufeld EB, Remaley AT, Demosky SJ, et al. (2001) Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 276:27584–27590

    PubMed  CAS  Google Scholar 

  • Nichols BJ, Lippincott-Schwartz J (2001) Endocytosis without clathrin coats. Trends Cell Biol 11:406–412

    PubMed  CAS  Google Scholar 

  • Nicholson AC, Frieda S, Pearce A, et al. (1995) Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler ThrombArterioscler Thromb Vasc Biol 15:269–275

    CAS  Google Scholar 

  • Nissen SE, Tuzcu EM, Brewer HB, et al. (2006) Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 354:1253–1263

    PubMed  CAS  Google Scholar 

  • Ohura K, Katona IM, Wahl LM, et al. (1987) Co-expression of chemotactic ligand receptors on human peripheral blood monocytes. J Immunol 138:2633–2639

    PubMed  CAS  Google Scholar 

  • Ohvo H, Olsio C, Slotte JP (1997) Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts. Biochim Biophys Acta 1349:131–141

    PubMed  CAS  Google Scholar 

  • Oram JF, Mendez AJ, Slotte JP, et al. (1991) High density lipoprotein apolipoproteins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterol-loaded fibroblasts. Arterioscler Thromb 11:403–414

    PubMed  CAS  Google Scholar 

  • Orso E, Werner T, Wolf Z, et al. (2006) Ezetimib influences the expression of raft-associated antigens in human monocytes. Cytometry A 69:206–208

    PubMed  Google Scholar 

  • Pal M, Pillarisetti S (2007) HDL elevators and mimetics—emerging therapies for atherosclerosis. Cardiovasc Hematol Agents Med Chem 5:55–66

    PubMed  CAS  Google Scholar 

  • Palinski W, Horkko S, Miller E, et al. (1996) Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 98:800–814

    PubMed  CAS  Google Scholar 

  • Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86:1372–1376

    PubMed  CAS  Google Scholar 

  • Panchagnula R, Britto C, Vinod J, et al. (2000) Wolman's disease—a case report. Indian J Pathol Microbiol 43:91–92

    PubMed  CAS  Google Scholar 

  • Parthasarathy S, Barnett J (1990) Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Proc Natl Acad Sci USA 87:9741–9745

    PubMed  CAS  Google Scholar 

  • Parthasarathy S, Steinbrecher UP, Barnett J, et al. (1985) Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc Natl Acad Sci USA 82:3000–3004

    PubMed  CAS  Google Scholar 

  • Pasceri V, Wu HD, Willerson JT, et al. (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 10:235–238

    Google Scholar 

  • Passlick B, Flieger D, Ziegler-Heitbrock HW (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:2527–2534

    PubMed  CAS  Google Scholar 

  • Patton S (1970) Correlative relationship of cholesterol and sphingomyelin in cell membranes. J Theor Biol 29:489–491

    PubMed  CAS  Google Scholar 

  • Pentchev PG, Blanchette-Mackie EJ, Dawidowicz EA (1994) The NP-C gene: a key to pathways of intracellular cholesterol transport. Trends Cell Biol 4:365–369

    PubMed  CAS  Google Scholar 

  • Perry DK, Hannun YA (1998) The role of ceramide in cell signaling. Biochim Biophys Acta 1436:233–243

    PubMed  CAS  Google Scholar 

  • Peters JM, Hennuyer N, Staels B, et al. (1997) Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 272:27307–27312

    PubMed  CAS  Google Scholar 

  • Pfeiffer A, Bottcher A, Orso E, et al. (2001) Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31:3153–3164

    PubMed  CAS  Google Scholar 

  • Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638

    PubMed  CAS  Google Scholar 

  • Plutzky J (2001) Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol 12:511–518

    PubMed  CAS  Google Scholar 

  • Porn MI, Ares MP, Slotte JP (1993) Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution. J Lipid Res 34:1385–1392

    PubMed  CAS  Google Scholar 

  • Puri V, Jefferson JR, Singh RD, et al. (2003) Sphingolipid storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage. J Biol Chem 278:20961–20970

    PubMed  CAS  Google Scholar 

  • Puri V, Watanabe R, Dominguez M, et al. (1999) Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol 1:386–388

    PubMed  CAS  Google Scholar 

  • Reasor MJ (1989) A review of the biology and toxicologic implications of the induction of lysosomal lamellar bodies by drugs. Toxicol Appl Pharmacol 97:47–56

    PubMed  CAS  Google Scholar 

  • Ricote M, Li AC, Willson TM, et al. (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    PubMed  CAS  Google Scholar 

  • Robenek H, Hofnagel O, Buers I, et al. (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119(Pt 20):4215–4224

    PubMed  CAS  Google Scholar 

  • Rogler G, Trumbach B, Klima B, et al. (1995) HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. Arterioscler Thromb Vasc Biol 15:683–690

    PubMed  CAS  Google Scholar 

  • Rothe G, Gabriel H, Kovacs E, et al. (1996) Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia. Arterioscler Thromb Vasc Biol 16:1437–1447

    PubMed  CAS  Google Scholar 

  • Rothe G, Herr A S, Stohr J, et al. (1999) A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease. Atherosclerosis 144:251–261

    PubMed  CAS  Google Scholar 

  • Rubic T, Trottmann M, Lorenz RL (2004) Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin. Biochem Pharmacol 67:411–419

    PubMed  CAS  Google Scholar 

  • Sakurada T, Orimo H, Okabe H, et al. (1976) Purification and properties of cholesterol ester hydrolase from human aortic intima and media. Biochim Biophys Acta 424:204–212

    PubMed  CAS  Google Scholar 

  • Salonen JT, Yla-Herttuala S, Yamamoto R, et al. (1992) Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339:883–887

    PubMed  CAS  Google Scholar 

  • Sano H, Nagai R, Matsumoto K, et al. (1999) Receptors for proteins modified by advanced glycation end products (AGE)—their functional role in atherosclerosis. Mech Ageing Dev 107:333–346

    PubMed  CAS  Google Scholar 

  • Schaer DJ, Alayash AI, Buehler PW (2007) Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor. Antioxid Redox Signal 9:991–999

    PubMed  CAS  Google Scholar 

  • Schifferer R, Liebisch G, Bandulik S, et al. (2007) ApoA-I induces a preferential efflux of monounsaturated phosphatidylcholine and medium chain sphingomyelin species from a cellular pool distinct from HDL(3) mediated phospholipid efflux. Biochim Biophys Acta 1771:853–863

    PubMed  CAS  Google Scholar 

  • Schinkel C, Sendtner R, Zimmer S, et al. (1998) Functional analysis of monocyte subsets in surgical sepsis. J Trauma 44:743–748

    PubMed  CAS  Google Scholar 

  • Schmitz G, Becker A, Aslanidis C (1996) ACAT/CEH and ACEH/LAL: two key enzymes in hepatic cellular cholesterol homeostasis and their involvement in genetic disorders. Z Gastroenterol 34(Suppl 3):68–72

    PubMed  CAS  Google Scholar 

  • Schmitz G, Ecker J (2007) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res

    Google Scholar 

  • Schmitz G, Grandl M (2007) Role of redox regulation and lipid rafts in macrophages during Ox-LDL-mediated foam cell formation. Antioxid Redox Signal 9:1499–1518

    PubMed  CAS  Google Scholar 

  • Schmitz G, Muller G (1991) Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J Lipid Res 32:1539–1570

    PubMed  CAS  Google Scholar 

  • Schmitz G, Orso E (2002) CD14 signalling in lipid rafts: new ligands and co-receptors. Curr Opin Lipidol 13:513–521

    PubMed  CAS  Google Scholar 

  • Schrijvers DM, De Meyer GR, Herman AG, et al. (2007) Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 73:470–480

    PubMed  CAS  Google Scholar 

  • Schuchman EH (2007) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. J Inherit Metab Dis 30:654–663

    PubMed  CAS  Google Scholar 

  • Seifert PS, Hugo F, Tranum-Jensen J, et al. (1990) Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions. J Exp Med 172:547–557

    PubMed  CAS  Google Scholar 

  • Seriolo B, Paolino S, Sulli A, et al. (2006) Effects of anti-TNF-alpha treatment on lipid profile in patients with active rheumatoid arthritis. Ann NY Acad Sci 1069:414–419

    PubMed  CAS  Google Scholar 

  • Sevin M, Lesca G, Baumann N, et al. (2007) The adult form of Niemann–Pick disease type C. Brain 130(Pt 1):120–133

    PubMed  Google Scholar 

  • Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40:439–452

    PubMed  CAS  Google Scholar 

  • Sigruener A, Buechler C, Bared SM, et al. (2007) E-LDL upregulates TOSO expression and enhances the survival of human macrophages. Biochem Biophys Res Commun

    Google Scholar 

  • Sillence DJ, Platt FM (2003) Storage diseases: new insights into sphingolipid functions. Trends Cell Biol 13:195–203

    PubMed  CAS  Google Scholar 

  • Simionescu N, Vasile E, Lupu F, et al. (1986) Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol 123:109–125

    PubMed  CAS  Google Scholar 

  • Simons K, Gruenberg J (2000) Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 10:459–462

    PubMed  CAS  Google Scholar 

  • Slotte JP, Bierman EL (1988) Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J 250:653–658

    PubMed  CAS  Google Scholar 

  • Sobo K, Le BI, Luyet P P, et al. (2007) Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS ONE 2:e851

    PubMed  Google Scholar 

  • Sprecher DL (2007) Lipids, lipoproteins, and peroxisome proliferator activated receptor-delta. Am J Cardiol 100:n20–n24

    PubMed  Google Scholar 

  • Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    PubMed  CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, et al. (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    PubMed  CAS  Google Scholar 

  • Steinbrecher UP, Lougheed M, Kwan WC, et al. (1989) Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. J Biol Chem 264:15216–15223

    PubMed  CAS  Google Scholar 

  • Steinbrecher UP, Parthasarathy S, Leake DS, et al. (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887

    PubMed  CAS  Google Scholar 

  • Stocker R (1994) Lipoprotein oxidation: mechanistic aspects, methodological approaches and clinical relevance. Curr Opin Lipidol 5:422–433

    PubMed  CAS  Google Scholar 

  • Stohr J, Schindler G, Rothe G, et al. (1998) Enhanced upregulation of the Fc gamma receptor IIIa (CD16a) during in vitro differentiation of ApoE4/4 monocytes. Arterioscler Thromb Vasc Biol 18:1424–1432

    PubMed  CAS  Google Scholar 

  • Subtil A, Gaidarov I, Kobylarz K, et al. (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 96:6775–6780

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kopia G, Hayashi S, et al. (2001) Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193

    PubMed  CAS  Google Scholar 

  • Sviridov D, Fidge N, Beaumier-Gallon G, et al. (2001) Apolipoprotein A-I stimulates the transport of intracellular cholesterol to cell-surface cholesterol-rich domains (caveolae). Biochem J 358(Pt 1):79–86

    PubMed  CAS  Google Scholar 

  • Szabo G, Miller-Graziano CL, Wu JY, et al. (1990) Differential tumor necrosis factor production by human monocyte subsets. J Leukoc Biol 47:206–216

    PubMed  CAS  Google Scholar 

  • Tabas I (2000) Cholesterol and phospholipid metabolism in macrophages. Biochim Biophys Acta 1529:164–174

    PubMed  CAS  Google Scholar 

  • Takahashi K, Takeya M, Sakashita N (2002) Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 35:179–203

    PubMed  CAS  Google Scholar 

  • Taketa K, Matsumura T, Yano M, et al. (2008) Ox-LDL activates PPARalpha and PPARgamma through MAPK-dependent COX-2 expression in macrophages. J Biol Chem

    Google Scholar 

  • Tamai O, Matsuoka H, Itabe H, et al. (1997) Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation 95:76–82

    PubMed  CAS  Google Scholar 

  • Tan NS, Michalik L, Noy N, et al. (2001) Critical roles of PPAR beta/delta in keratinocyte response to inflammation. Genes Dev 15(24):3263–3277

    PubMed  CAS  Google Scholar 

  • te Vruchte D, Lloyd-Evans E, Veldman RJ, et al. (2004) Accumulation of glycosphingolipids in Niemann–Pick C disease disrupts endosomal transport. J Biol Chem 279:26167–26175

    Google Scholar 

  • Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    PubMed  CAS  Google Scholar 

  • Tjoelker LW, Eberhardt C, Unger J, et al. (1995) Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad. J Biol Chem 270:25481–25487

    PubMed  CAS  Google Scholar 

  • Tontonoz P, Nagy L, Alvarez JG, et al. (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    PubMed  CAS  Google Scholar 

  • Torzewski M, Klouche M, Hock J, et al. (1998) Immunohistochemical demonstration of enzymatically modified human LDL and its colocalization with the terminal complement complex in the early atherosclerotic lesion. Arterioscler Thromb Vasc Biol 18:369–378

    PubMed  CAS  Google Scholar 

  • Torzewski M, Lackner KJ (2006) Initiation and progression of atherosclerosis—enzymatic or oxidative modification of low-density lipoprotein? Clin Chem Lab Med 44:1389–1394

    PubMed  CAS  Google Scholar 

  • Tsimikas S, Palinski W, Witztum JL (2001) Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 21:95–100

    PubMed  CAS  Google Scholar 

  • Tsukamoto K, Hirano K, Tsujii K, et al. (2001) ATP-binding cassette transporter-1 induces rearrangement of actin cytoskeletons possibly through Cdc42/N-WASP. Biochem Biophys Res Commun 287:757–765

    PubMed  CAS  Google Scholar 

  • Vainio S, Bykov I, Hermansson M, et al. (2005) Defective insulin receptor activation and altered lipid rafts in Niemann–Pick type C disease hepatocytes. Biochem J 391(Pt 3):465–472

    PubMed  CAS  Google Scholar 

  • van Berkel TJ, Out R, Hoekstra M, et al. (2005) Scavenger receptors: friend or foe in atherosclerosis? Curr Opin Lipidol 16:525–535

    PubMed  Google Scholar 

  • Vanier MT, Pentchev P, Rodriguez-Lafrasse C, et al. (1991) Niemann–Pick disease type C: an update. J Inherit Metab Dis 14:580–595

    PubMed  CAS  Google Scholar 

  • Verheye S, Martinet W, Kockx M M, et al. (2007) Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol 49:706–715

    PubMed  CAS  Google Scholar 

  • Walter M, Gerdes U, Seedorf U, et al. (1994) The high density lipoprotein- and apolipoprotein A-I-induced mobilization of cellular cholesterol is impaired in fibroblasts from Tangier disease subjects. Biochem Biophys Res Commun 205:850–856

    PubMed  CAS  Google Scholar 

  • Wang X, Reape T J, Li X, et al. (1999) Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions. FEBS Lett 462:145–150

    PubMed  CAS  Google Scholar 

  • Wei ML (2006) Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 19:19–42

    PubMed  CAS  Google Scholar 

  • Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    PubMed  CAS  Google Scholar 

  • Witting SR, Maiorano JN, Davidson WS (2003) Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J Biol Chem 278:40121–40127

    PubMed  CAS  Google Scholar 

  • Wolf Z, Orso E, Werner T, et al. (2006) A flow cytometric screening test for detergent-resistant surface antigens in monocytes. Cytometry A 69:192–195

    PubMed  Google Scholar 

  • Wolf Z, Orso E, Werner T, et al. (2007) Monocyte cholesterol homeostasis correlates with the presence of detergent resistant membrane microdomains. Cytometry A 71:486–494

    PubMed  Google Scholar 

  • Xu X, Bittman R, Duportail G, et al. (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    PubMed  CAS  Google Scholar 

  • Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39:843–849

    PubMed  CAS  Google Scholar 

  • Yeaman SJ (2004) Hormone-sensitive lipase—new roles for an old enzyme. Biochem J 379(Pt 1):11–22

    PubMed  CAS  Google Scholar 

  • Yla-Herttuala S, Palinski W, Rosenfeld M E, et al. (1989) Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086–1095

    PubMed  CAS  Google Scholar 

  • Zembala M, Pryjma J, Uracz W, et al. (1986) Regulation of human lymphocyte response in vitro by monocytes and their subsets. Folia Biol (Praha) 32:1–11

    CAS  Google Scholar 

  • Zembala M, Uracz W, Ruggiero I, et al. (1984) Isolation and functional characteristics of FcR+ and FcR- human monocyte subsets. J Immunol 133:1293–1299

    PubMed  CAS  Google Scholar 

  • Zeng Y, Tao N, Chung KN, et al. (2003) Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1. J Biol Chem 278:45931–45936

    PubMed  CAS  Google Scholar 

  • Zha X, Gauthier A, Genest J, et al. (2003) Secretory vesicular transport from the Golgi is altered during ATP-binding cassette protein A1 (ABCA1)-mediated cholesterol efflux. J Biol Chem 278:10002–10005

    PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock HW, Fingerle G, Strobel M, et al. (1993) The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol 23:2053–2058

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schmitz .

Glossary

Advanced glycation end products (AGEs):

AGEs are the result of a chain of chemical reactions after an initial nonenzymatic glycosylation. AGEs can be formed exogenously by heating sugars with fats or proteins, or endogenously through normal metabolism and aging. AGEs are thought to be major factors in aging and age-related chronic diseases.

Apolipoprotein A-I (ApoA-I):

ApoA-I is the major protein component of HDL in plasma. The protein helps to clear cholesterol from arteries and promotes cholesterol efflux form tissues to the liver for excretion. It is a cofactor for lecithin cholesterol acyltransferase (LCAT), which is responsible for the formation of most plasma cholesteryl esters.

ATP-binding cassette transporter ABCA1 (member 1 of human transporter subfamily ABCA):

ABCA1 is a human protein and gene. This transporter is a major regulator of cellular cholesterol and phospholipids homeostasis. ABCA1 functions as a cholesterol efflux pump in the cellular lipid removal pathway.

Autophagy:

Autophagy, or autophagocytosis, is a catabolic process involving the degradation of a cell's own components through the lysosomal machinery. It is a tightly regulated process that plays a normal part in cell growth, development, and homeostasis, helping to maintain a balance between the synthesis, degradation, and subsequent recycling of cellular products. It is a major mechanism by which a starving cell reallocates nutrients from unnecessary processes to more essential processes.

Complement receptor 3 (CD11b/CD18):

Integrin alpha M (ITGAM, CR3A or CD11b) and integrin β2 (ITGB2 or CD18) form the heterodimeric integrin alpha-M beta-2 (αMβ2) molecule, also known as macrophage-1 antigen (Mac-1) or complement receptor 3 (CR3). Integrins are integral cell-surface proteins composed of an alpha chain and a beta chain. Integrins are known to participate in cell adhesion and migration as well as cell-surface-mediated signaling. αMβ2 is expressed on the surface of many leukocytes involved in the innate immune system. Furthermore, it plays a role in the complement system due to its capacity to bind inactivated complement component 3b (iC3b).

Glycerophospholipids:

Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes.

Glycosphingolipids (GSLs):

GSLs are ceramide derivatives containing more than one sugar residue and are constituents of lipid membrane microdomains.

Lipopolysaccharide (LPS):

LPS is a large molecule consisting of a lipid and a polysaccharide (carbohydrate). LPS acts as the prototypical endotoxin, because it binds the CD14/TLR4/MD2 receptor complex, which promotes the secretion of proinflammatory cytokines in many cell types, but especially in macrophages.

Niemann–Pick disease:

Niemann–Pick disease is an autosomal recessive disorder affecting lipid metabolism resulting in an accumulation of harmful amounts of lipids in the spleen, liver, lungs, bone marrow, and brain. There are three variants (A, B, and C) of Niemann–Pick disease based on the genetic cause and the symptoms exhibited by the patient.

Phagocytosis:

Phagocytosis is the cellular process of engulfing solid particles by the cell membrane to form an internal phagosome (vacuole formed around a particle). The phagosome is usually delivered to the lysosome where it fuses with the lysosome and forms a phagolysosome.

Phospholipidosis:

Phospholipidosis is a lipid storage disorder which is characterized by lamellar body formation and excess phospholipid accumulation within cells. Drug-induced phospholipidosis is an adverse drug reaction that occurs with many cationic amphiphilic drugs.

Receptor for advanced glycation end products (RAGE):

RAGE is expressed by many cells in the body (e.g., endothelial cells, smooth muscle cells, or cells of the immune system). When binding AGEs, RAGE contributes to age- and diabetes-related chronic inflammatory diseases such as atherosclerosis, asthma, arthritis, and myocardial infarction.

Tangier disease:

Tangier disease is a rare autosomal recessive disorder characterized by a severe reduction in the amount of HDL in the bloodstream, which is a risk factor for CAD. People with Tangier disease have defective ABCA1 transporters resulting in a greatly reduced ability to transport cholesterol out of their cells, leading to an accumulation of cholesterol in many body tissues.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Schmitz, G., Grandl, M. (2008). Lipid homeostasis in macrophages – Implications for atherosclerosis. In: Reviews of Physiology Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/112_2008_802

Download citation

Publish with us

Policies and ethics