Skip to main content

Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology Biochemistry and Pharmacology ((REVIEWS,volume 157))

Abstract

Cyclic 3′,5′-guanylyl and adenylyl nucleotides function as second messengers in eukaryotic signal transduction pathways and as sensory transducers in prokaryotes. The nucleotidyl cyclases (NCs) that catalyze the synthesis of these molecules comprise several evolutionarily distinct groups, of which class III is the largest. The domain structures of prokaryotic and eukaryotic class III NCs are diverse, including a variety of regulatory and transmembrane modules. Yet all members of this family contain one or two catalytic domains, characterized by an evolutionarily ancient topological motif (βααββαβ) that is preserved in several other enzymes that catalyze the nucleophilic attack of a 3′-hydroxyl upon a 5′ nucleotide phosphate. Two dyad-related catalytic domains compose one catalytic unit, with the catalytic sites formed at the domain interface. The catalytic domains of mononucleotidyl cyclases (MNCs) and diguanylate cyclases (DGCs) are called cyclase homology domains (CHDs) and GGDEF domains, respectively. Prokaryotic NCs usually contain only one catalytic domain and are catalytically active as intermolecular homodimers. The different modes of dimerization in class III NCs probably evolved concurrently with their mode of binding substrate. The catalytic mechanism of GGDEF domain homodimers is not completely understood, but they are expected to have a single active site with each subunit contributing equivalent determinants to bind one GTP molecule or half a c-diGMP molecule. CHD dimers have two potential dyad-related active sites, with both CHDs contributing determinants to each site. Homodimeric class III MNCs have two equivalent catalytic sites, although such enzymes may show half-of-sites reactivity. Eukaryotic class III MNCs often contain two divergent CHDs, with only one catalytically competent site. All CHDs appear to use a common catalytic mechanism, which requires the participation of two magnesium or manganese ions for binding polyphosphate groups and nucleophile activation. In contrast, mechanisms for purine recognition and specificity are more diverse. Class III NCs are subject to regulation by small molecule effectors, endogenous domains, or exogenous protein partners. Many of these regulators act by altering the interface of the catalytic domains and therefore the integrity of the catalytic site(s). This review focuses on both conserved and divergent mechanisms of class III NC function and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Artymiuk PJ, Poirette AR, Rice DW, Willett P (1997) A polymerase I palm in adenylyl cyclase? Nature 388:33–34

    Article  PubMed  CAS  Google Scholar 

  • Barton GJ (1993) ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng 6:37–40

    Article  PubMed  CAS  Google Scholar 

  • Barzu O, Danchin A (1994) Adenylyl cyclases: a heterogeneous class of ATP-utilizing enzymes. Prog Nucleic Acid Res Mol Biol 49:241–283

    Article  PubMed  CAS  Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10:25–33

    PubMed  CAS  Google Scholar 

  • Beuve A (1999) Conversion of a guanylyl cyclase to an adenylyl cyclase. Methods 19:545–550

    Article  PubMed  CAS  Google Scholar 

  • Beuve A, Krin E, Danchin A (1993) Rhizobium meliloti adenylate cyclase: probing of a NTP-binding site common to cyclases and cation transporters. C R Acad Sci III 316:533–539

    Google Scholar 

  • Bieger B, Essen LO (2001) Structural analysis of adenylate cyclases from Trypanosoma brucei in their monomeric state. EMBO J 20:433–445

    Article  PubMed  CAS  Google Scholar 

  • Brautigam CA, Steitz TA (1998) Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol 8:54–63

    Article  PubMed  CAS  Google Scholar 

  • Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 96:79–84

    Article  PubMed  CAS  Google Scholar 

  • Cann MJ, Hammer A, Zhou J, Kanacher T (2003) A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J Biol Chem 278:35033–35038

    Article  PubMed  CAS  Google Scholar 

  • Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U, Schirmer T (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 101:17084–17089

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Weng G, Li J, Harry A, Pieroni J, Dingus J, Hildebrandt JD, Guarnieri F, Weinstein H, Iyengar R (1997) A surface on the G protein beta-subunit involved in interactions with adenylyl cyclases. Proc Natl Acad Sci USA 94:2711–2714

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  PubMed  CAS  Google Scholar 

  • Cooper D (2005) Compartmentalization of adenylate cyclase and cAMP signalling. Biochem Soc Trans 33:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Mons N, Fagan K (1994) Ca(2+)-sensitive adenylyl cyclases. Cell Signal 6:823–840

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Schell MJ, Thorn P, Irvine RF (1998) Regulation of adenylyl cyclase by membrane potential. J Biol Chem 273:27703–27707

    Article  PubMed  CAS  Google Scholar 

  • Cooper DMF (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375:517–529

    Article  PubMed  CAS  Google Scholar 

  • Cotta M, Whitehead T, Wheeler M (1998) Identification of a novel adenylate cyclase in the ruminal anaerobe, Prevotella ruminicola D31d. FEMS Microbiol Lett 164:257–260

    Article  PubMed  CAS  Google Scholar 

  • Coudart-Cavalli MP, Sismeiro O, Danchin A (1997) Bifunctional structure of two adenylyl cyclases from the myxobacterium Stigmatella aurantiaca. Biochimie 79:757–767

    Article  PubMed  CAS  Google Scholar 

  • Dessauer CW, Gilman AG (1997) The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition. J Biol Chem 272:27787–27795

    Article  PubMed  CAS  Google Scholar 

  • Dessauer CW, Scully TT, Gilman AG (1997) Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem 272:22272–22277

    Article  PubMed  CAS  Google Scholar 

  • Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG (1998) Identification of a Gia binding site on type V adenylyl cyclase. J Biol Chem 273:25831–25839

    Article  PubMed  CAS  Google Scholar 

  • Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG (1999) The interactions of adenylate cyclases with P-site inhibitors. Trends Pharmacol Sci 20:205–210

    Article  PubMed  CAS  Google Scholar 

  • Doublié S, Ellenberger T (1998) The mechanism of action of T7 DNA polymerase. Curr Opin Struct Biol 8:704–712

    Article  PubMed  Google Scholar 

  • Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (2002) Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415:396–402

    Article  PubMed  CAS  Google Scholar 

  • Eckstein F, Romaniuk PJ, Heideman W, Storm DR (1981) Stereochemistry of the mammalian adenylate cyclase reaction. J Biol Chem 256:9118–9120

    PubMed  CAS  Google Scholar 

  • Feng Q, Zhang Y, Li Y, Liu Z, Zuo J, Fang F (2005) Two domains are critical for the nuclear localization of soluble adenylyl cyclase. Biochimie 88:319–328

    Article  PubMed  CAS  Google Scholar 

  • Gallagher DT, Smith NN, Kim SK, Heroux A, Robinson H, Reddy PT (2006) Structure of the Class IV Adenylyl Cyclase Reveals a Novel Fold. J Mol Biol. 2006 Aug 11; [Epub ahead of print]

    Google Scholar 

  • Geng W, Wang Z, Zhang J, Reed BY, Pak CYC, Moe OW (2005) Cloning and characterization of the human soluble adenylyl cyclase. Am J Physiol Cell Physiol 288:C1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Gu C, Cali JJ, Cooper DM (2002) Dimerization of mammalian adenylate cyclases. Eur J Biochem 269:413–421

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Shen Y, Zhukovskaya NL, Florian J, Tang WJ (2004) Structural and kinetic analyses of the interaction of anthrax adenylyl cyclase toxin with reaction products cAMP and pyrophosphate. J Biol Chem 279:29427–29435

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ (2005) Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J 24:3190–3201

    Article  PubMed  CAS  Google Scholar 

  • Guo YL, Seebacher T, Kurz U, Linder JU, Schultz JE (2001) Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. EMBO J 20:3667–3675

    Article  PubMed  CAS  Google Scholar 

  • Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  PubMed  CAS  Google Scholar 

  • Holland MM, Leib TK, Gerlt JA (1988) Isolation and characterization of a small catalytic domain released from the adenylate cyclase from Escherichia coli by digestion with trypsin. J Biol Chem 263:14661–14668

    PubMed  CAS  Google Scholar 

  • Hu B, Nakata H, Gu C, De Beer T, Cooper DM (2002) A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs. J Biol Chem 277:33139–33147

    Article  PubMed  CAS  Google Scholar 

  • Hurley J (1998) The adenylyl and guanylyl cyclase superfamily. Curr Opin Struct Biol 8:770–777

    Article  PubMed  CAS  Google Scholar 

  • Hurley JH (1999) Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem 274:7599–7602

    Article  PubMed  CAS  Google Scholar 

  • Hyne RV, Garbers DL (1979) Regulation of guinea pig sperm adenylate cyclase by calcium. Biol Reprod 21:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal BS, Conti M (2001) Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem 276:31698–31708

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal BS, Conti M (2003) Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa. Proc Natl Acad Sci USA 100:10676–10681

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Unno T, Yashiro K, Ohmori M (2001) CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases. J Biol Chem 276:10564–10569

    Article  PubMed  CAS  Google Scholar 

  • Ketkar A, Shenoya A, Ramagopal UA, Visweswariaha SS, Sugun K (2006) A structural basis for the role of nucleotide specifying residues in regulating the oligomerization of the Rv1625c adenylyl cyclase from M. tuberculosis. J Mol Biol 356:904–916

    Article  PubMed  CAS  Google Scholar 

  • Ketkar AD, Shenoy AR, Kesavulu MM, Visweswariah SS, Suguna K (2004) Purification, crystallization and preliminary X-ray diffraction analysis of the catalytic domain of adenylyl cyclase Rv1625c from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr 60:371–373

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Vassylyev DG, Matsushima M, Mitsuoka K, Murata K, Hiral T, Fujiyoshi Y (1997) Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389:206–211

    Article  PubMed  CAS  Google Scholar 

  • Krupinski J, Cali JJ (1998) Molecular diversity of the adenylyl cyclases. Adv Second Messenger Phosphoprotein Res 32:53–79

    PubMed  CAS  Google Scholar 

  • Ladant D, Ullmann A (1999) Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7:172–176

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    Article  PubMed  CAS  Google Scholar 

  • Linder JU (2005) Substrate selection by class III adenylyl cyclases and guanylyl cyclases. IUBMB Life 57:797–803

    Article  PubMed  CAS  Google Scholar 

  • Linder JU, Schultz JE (2003) The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal 15:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Linder JU, Engel P, Reimer A, Kruger T, Plattner H, Schultz A, Schultz JE (1999) Guanylyl cyclases with the topology of mammalian adenylyl cyclases and an N-terminal P-type ATPase-like domain in Paramecium, Tetrahymena and Plasmodium. EMBO J 18:4222–4232

    Article  PubMed  CAS  Google Scholar 

  • Linder JU, Hoffmann T, Kurz U, Schultz JE (2000) A guanylyl cyclase from Paramecium with 22 transmembrane spans. Expression of the catalytic domains and formation of chimeras with the catalytic domains of mammalian adenylyl cyclases. J Biol Chem 275:11235–11240

    Article  PubMed  CAS  Google Scholar 

  • Linder JU, Schultz A, Schultz JE (2002) Adenylyl cyclase Rv1264 from Mycobacterium tuberculosis has an autoinhibitory N-terminal domain. J Biol Chem 277:15271–15276

    Article  PubMed  CAS  Google Scholar 

  • Linder JU, Hammer A, Schultz JE (2004) The effect of HAMP domains on class IIIb adenylyl cyclases from Mycobacterium tuberculosis. Eur J Biochem 271:2446–2451

    Article  PubMed  CAS  Google Scholar 

  • Litvin NT, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922–15926

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Ruoho AE, Rao VD, Hurley JH (1997) Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Natl Acad Sci USA 94:13414–13419

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Ono TA (2005) Adenylyl cyclase activity of Cya1 from the cyanobacterium Synechocystis sp. strain PCC 6803 is inhibited by bicarbonate. J Bacteriol 187:5032–5035

    Article  PubMed  CAS  Google Scholar 

  • McCue LA, McDonough KA, Lawrence CE (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 10:204–219

    Article  PubMed  CAS  Google Scholar 

  • Mons N, Decorte L, Jaffard R, Cooper DM (1998) Ca2+-sensitive adenylyl cyclases, key integrators of cellular signalling. Life Sci 62:1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Mou TC, Gille A, Fancy DA, Seifert R, Sprang SR (2005) Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 ′(3′)-O-(N-methylanthraniloyl)-guanosine 5′-triphosphate. J Biol Chem 280:7253–7261

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG (1998) How far divergent evolution goes in proteins. Curr Opin Struct Biol 8:380–387

    Article  PubMed  CAS  Google Scholar 

  • Noyama K, Maekawa S (2003) Localization of cyclic nucleotide phosphodiesterase 2 in the brain-derived Triton-insoluble low-density fraction (raft). Neurosci Res 45:141–148

    Article  PubMed  CAS  Google Scholar 

  • Ochoa de Alda JAG, Ajlani G, Houmard J (2000) Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J Bacteriol 182:3839–3842

    Article  Google Scholar 

  • Pei J, Grishin N (2001) GGDEF domain is homologous to adenylyl cyclase. Proteins 42:210–216

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Hoskins J, McKenney K (1995a) Mapping domains in proteins: dissection and expression of Escherichia coli adenylyl cyclase. Anal Biochem 231:282–286

    Article  PubMed  CAS  Google Scholar 

  • Reddy R, Smith D, Wayman G, Wu Z, Villacres EC, Storm DR (1995b) Voltage-sensitive adenylyl cyclase activity in cultured neurons. A calcium-independent phenomenon. J Biol Chem 270:14340–14346

    Article  PubMed  CAS  Google Scholar 

  • Roelofs J, Van Haastert PJM (2002) Deducing the origin of soluble adenylyl cyclase, a gene lost in multiple lineages. Mol Biol Evol 19:2239–2246

    PubMed  CAS  Google Scholar 

  • Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639

    Article  PubMed  CAS  Google Scholar 

  • Scholich K, Barbier AJ, Mullenix JB, Patel TB (1997a) Characterization of soluble forms of nonchimeric type V adenylyl cyclase. Proc Natl Acad Sci USA 94:2915–2920

    Article  PubMed  CAS  Google Scholar 

  • Scholich K, Wittpoth C, Barbier AJ, Mullenix JB, Patel TB (1997b) Identification of an intramolecular interaction between small regions in type V adenylyl cyclase that influences stimulation of enzyme activity by Gsalpha. Proc Natl Acad Sci USA 94:9602–9607

    Article  PubMed  CAS  Google Scholar 

  • Seebacher T, Linder JU, Schultz JE (2001) An isoform-specific interaction of the membrane anchors affects mammalian adenylyl cyclase type V activity. Eur J Biochem 268:105–110

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Zhukovskaya NL, Guo Q, Florián J, Tang WJ (2005) Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor. EMBO J 24:929–941

    Article  PubMed  CAS  Google Scholar 

  • Shenoy A, Visweswariah S (2004) Class III nucleotide cyclases in bacteria and archaebacteria: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases. FEBS Lett 561:11–21

    Article  CAS  Google Scholar 

  • Shenoy AR, Srinivasan N, Subramaniam M, Visweswariah SS (2003) Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization. FEBS Lett 545:253–259

    Article  PubMed  CAS  Google Scholar 

  • Shenoy AR, Sreenath NP, Mahalingam M, Visweswariah SS (2005) Characterization of phylogenetically distant members of the adenylate cyclase family from mycobacteria: Rv1647 from Mycobacterium tuberculosis and its orthologue ML1399 from M. leprae. Biochem J 387:541–551

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF (1999) G protein regulation of adenylate cyclase. Trends Pharmacol Sci 20:66–73

    Article  PubMed  CAS  Google Scholar 

  • Sinha SC, Wetterer M, Sprang SR, Schultz JE, Linder JU (2005) Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c. EMBO J 24:663–673

    Article  PubMed  CAS  Google Scholar 

  • Sismeiro O, Trotot P, Biville F, Vivares C, Danchin A (1998) Aeromonas hydrophila adenylyl cyclase2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. J Bacteriol 180:3339–3344

    PubMed  CAS  Google Scholar 

  • Smit MJ, Iyengar R (1998) Mammalian adenylyl cyclases. Adv Second Messenger Phosphoprotein Res 32:1–21

    PubMed  CAS  Google Scholar 

  • Steegborn C, Litvin TN, Hess KC, Capper AB, Taussig R, Buck J, Levin LR, Wu H (2005a) A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen. J Biol Chem 280:31754–31759

    Article  PubMed  CAS  Google Scholar 

  • Steegborn C, Litvin TN, Levin LR, Buck J, Wu H (2005b) Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12:32–37

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA (1993) DNA- and RNA-dependent DNA polymerases. Curr Opin Struct Biol 3:31–38

    Article  CAS  Google Scholar 

  • Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Smerdon SJ, Jäger J, Joyce CM (1994) A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Süsstrunk U, Pidoux J, Taubert S, Ullmann A, CJ T (1998) Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 30:33–46

    Article  PubMed  Google Scholar 

  • Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2:168–184

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Whisnant RE, Kleuss C, Gilman AG (1997) Interaction of Gsa with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem 272:22265–22271

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Beuve A, Tesmer JJG, Sprang SR, Garbers DL, Gilman AG (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 273:16332–16338

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1995) Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. Science 268:1769–1772

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Stanzel M, Gilman AG (1995) Truncation and alanine-scanning mutants of type I adenylyl cyclase. Biochemistry 34:14563–14572

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Yan S, Drum CL (1998) Class III adenylyl cyclases: regulation and underlying mechanisms. Adv Second Messenger Phosphoprotein Res 32:137–151

    PubMed  CAS  Google Scholar 

  • Taussig R, Zimmermann G (1998) Type-specific regulation of mammalian adenylyl cyclases by G protein pathways. Adv Second Messenger Phosphoprotein Res 32:81–98

    PubMed  CAS  Google Scholar 

  • Taussig R, Iniguez-Lluhi JA, Gilman AG (1993) Inhibition of adenylyl cyclase by Gi alpha. Science 261:218–221

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Tang WJ, Hepler JR, Gilman AG (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 269:6093–6100

    PubMed  CAS  Google Scholar 

  • Tellez-Sosa J, Soberon N, Vega-Segura A, Torres-Marquez ME, Cevallos MA (2002) The rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J Bacteriol 184:3560–3568

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJ, Sprang SR (1998) The structure, catalytic mechanism and regulation of adenylyl cyclase. Curr Opin Struct Biol 8:713–719

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJ, Dessauer CW, Sunahara RK, Murray LD, Johnson RA, Gilman AG, Sprang SR (2000) Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 39:14464–14471

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJG, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsa_GTPgS. Science 278:1907–1916

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJG, Sunahara RK, Johnson RA, Gilman AG, Sprang SR (1999) Two metal ion catalysis in adenylyl cyclase. Science 285:756–760

    Article  PubMed  CAS  Google Scholar 

  • Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE, Linder JU (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Tucker CL, Hurley JH, Miller TR, Hurley JB (1998) Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci USA 95:5993–5997

    Article  PubMed  CAS  Google Scholar 

  • Weber JH, Vishnyakov A, Hambach K, Schultz A, Schultz JE, Linder JU (2004) Adenylyl cyclases from plasmodium, paramecium and tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16:115–125

    Article  PubMed  CAS  Google Scholar 

  • Whisnant RE, Gilman AG, Dessauer CW (1996) Interaction of the two cytosolic domains of mammalian adenylyl cyclase. Proc Natl Acad Sci USA 93:6621–6625

    Article  PubMed  CAS  Google Scholar 

  • Wittpoth C, Scholich K, Yigzaw Y, Stringfield TM, Patel TB (1999) Regions on adenylyl cyclase that are necessary for inhibition of activity by beta gamma and G(ialpha) subunits of heterotrimeric G proteins. Proc Natl Acad Sci USA 96:9551–9556

    Article  PubMed  CAS  Google Scholar 

  • Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci USA 95:13899–13904

    Article  PubMed  CAS  Google Scholar 

  • Yan SZ, Hahn D, Huang ZH, Tang WJ (1996) Two cytoplasmic domains of mammalian adenylyl cyclase form a Gsa- and forskolin-activated enzyme in vitro. J Biol Chem 271:10941–10945

    Article  PubMed  CAS  Google Scholar 

  • Yan SZ, Huang ZH, Rao VD, Hurley JH, Tang WJ (1997a) Three discrete regions of mammalian adenylyl cyclase form a site for Gsalpha activation. J Biol Chem 272:18849–18854

    Article  PubMed  CAS  Google Scholar 

  • Yan SZ, Huang ZH, Shaw RS, Tang WJ (1997b) The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase. J Biol Chem 272:12342–12349

    Article  PubMed  CAS  Google Scholar 

  • Zehmer JK, Hazel JR (2003) Plasma membrane rafts of rainbow trout are subject to thermal acclimation. J Exp Biol 206:1657–1667

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Liu Y, Ruoho AE, Hurley JH (1997) Structure of the adenylyl cyclase catalytic core. Nature 386:247–253

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann G, Zhou D, Taussig R (1998) Mutations uncover a role for two magnesium ions in the catalytic mechanism of adenylyl cyclase. J Biol Chem 273:19650–19655

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Howard Hughes Medical Institute, NIH grant DK46371 (SRS), Welch Foundation grant I-1229 (SRS) and the John W. and Rhonda K. Pate Professorship to SRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Sinha .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Sinha, S.C., Sprang, S.R. (2006). Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. In: Reviews of Physiology Biochemistry and Pharmacology. Reviews of Physiology Biochemistry and Pharmacology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/112_0603

Download citation

  • DOI: https://doi.org/10.1007/112_0603

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39688-8

  • Online ISBN: 978-3-540-39689-5

Publish with us

Policies and ethics