Skip to main content

Engineering of Microbial Electrodes

  • Chapter
  • First Online:
Bioelectrosynthesis

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 167))

Abstract

This chapter provides an overview of the current state-of-the-art in the engineering of microbial electrodes for application in microbial electrosynthesis. First, important functional aspects and requirements of basic materials for microbial electrodes are introduced, including the meaningful benchmarking of electrode performance, a comparison of electrode materials, and methods to improve microbe–electrode interaction. Suitable current collectors and composite materials that combine different functionalities are also discussed. Subsequently, the chapter focuses on the design of macroscopic electrode structures. Aspects such as mass transfer and electrode topology are touched upon, and a comparison of the performance of microbial electrodes relevant for practical application is provided. The chapter closes with an overall conclusion and outlook, highlighting the future prospects and challenges for the engineering of microbial electrodes toward practical application in the field of microbial electrosynthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 29 March 2018

    In 30th page, Table 2, in the last row, the references 33 and 134 are inserted.

Abbreviations

Ag/AgCl:

The silver/silver chloride reference electrode, approx. + 199 mV vs SHE

AQDS:

Anthraquinone-2,6-disulfonic disodium salt, a redox mediator

CB:

Carbon black

CNTs:

Carbon nanotubes

CP:

Carbon paper

DET:

Direct electron transfer

ECSA:

Electrochemical accessible surface area

GNR:

Graphene nanoribbons

ITO:

Indium tin oxide, a transparent electronically conductive material

MEC:

Microbial electrolysis cell

MET:

Mediated electron transfer

MFC:

Microbial fuel cell

PANI:

Polyaniline

PPy:

Polypyrrole

PTFE:

Polytetrafluoroethylene

R a :

Roughness average, arithmetic average of the absolute values of height deviations from the mean line

R Ω :

Ohmic resistance, for example, of an electrode material

SCE:

The saturated calomel reference electrode, approx. + 244 mV vs SHE

SHE:

The standard hydrogen reference electrode

References

  1. Guo W et al. (2017) Synergizing 13C metabolic flux analysis and metabolic engineering for biochemical production. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_2

    Google Scholar 

  2. Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13(7):475–478

    CAS  Google Scholar 

  3. Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9(2):127–131

    Google Scholar 

  4. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485

    CAS  PubMed  Google Scholar 

  6. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814

    CAS  PubMed  Google Scholar 

  7. Borole AP, Reguera G, Ringeisen B, Wang Z, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energ Environ Sci 4(12):4813

    CAS  Google Scholar 

  8. Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Electroactive bacteria-molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98:8481–8495

    CAS  PubMed  Google Scholar 

  9. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84(571):260–276

    Google Scholar 

  10. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30(2):145–152

    CAS  Google Scholar 

  11. Logan BE (2008) Microbial fuel cells. Wiley, Hoboken, NJ

    Google Scholar 

  12. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105(10):3968–3973

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang IS, Moon HS, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16(2):163–177

    CAS  Google Scholar 

  14. Liu Y, Kim H, Franklin RR, Bond DR (2011) Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem 12(12):2235–2241

    CAS  PubMed  Google Scholar 

  15. Millo D, Harnisch F, Patil SA, Ly HK, Schröder U, Hildebrandt P (2011) In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance raman spectroscopy. Angew Chem Int Ed 50(11):2625–2627

    CAS  Google Scholar 

  16. Babauta JT, Beasley CA, Beyenal H (2014) Investigation of electron transfer by geobacter sulfurreducens biofilms by using an electrochemical quartz crystal microbalance. ChemElectroChem 1(11):2007–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo K, Prévoteau A, Patil SA, Rabaey K (2015) Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 33:149–156

    CAS  PubMed  Google Scholar 

  18. Rouleau S et al. (2017) RNA G-Quadruplexes as key motifs of the transcriptome. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_8

    Google Scholar 

  19. Pocaznoi D, Calmet A, Etcheverry L, Erable B, Bergel A (2012) Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environ Sci 5(11):9645–9652

    CAS  Google Scholar 

  20. Ketep SF, Bergel A, Calmet A, Erable B (2014) Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems. Energy Environ Sci 7(5):1633–1637

    CAS  Google Scholar 

  21. Zheng S, Yang F, Chen S, Liu L, Xiong Q, Yu T, Zhao F, Schröder U, Hou H (2015) Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J Power Sources 284:252–257

    CAS  Google Scholar 

  22. Baudler A, Schmidt I, Langner M, Greiner A, Schroder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055

    CAS  Google Scholar 

  23. Baudler A, Langner M, Rohr C, Greiner A, Schroder U (2017) Metal-polymer hybrid architectures as novel anode platform for microbial electrochemical technologies. ChemSusChem 10(1):253–257

    CAS  PubMed  Google Scholar 

  24. Chen SL, Hou HQ, Harnisch F, Patil SA, Carmona-Martinez AA, Agarwal S, Zhang YY, Sinha-Ray S, Yarin AL, Greiner A, Schröder U (2011) Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy Environ Sci 4(4):1417–1421

    CAS  Google Scholar 

  25. Chen S, He G, Liu Q, Harnisch F, Zhou Y, Chen Y, Hanif M, Wang S, Peng X, Hou H, Schröder U (2012) Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy Environ Sci 5(12):9769

    CAS  Google Scholar 

  26. Kipf E, Zengerle R, Gescher J, Kerzenmacher S (2014) How does the choice of anode material influence electrical performance? A comparison of two microbial fuel cell model organisms. ChemElectroChem 1(11):1849–1853

    CAS  Google Scholar 

  27. Lanas V, Logan BE (2013) Evaluation of multi-brush anode systems in microbial fuel cells. Bioresour Technol 148:379–385

    CAS  PubMed  Google Scholar 

  28. Massazza D, Parra R, Busalmen JP, Romeo HE (2015) New ceramic electrodes allow reaching the target current density in bioelectrochemical systems. Energy Environ Sci 8(9):2707–2712

    CAS  Google Scholar 

  29. Guo K, Donose BC, Soeriyadi AH, Prévoteau A, Patil SA, Freguia S, Gooding JJ, Rabaey K (2014) Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ Sci Technol 48(12):7151–7156

    CAS  PubMed  Google Scholar 

  30. Deeke A, Sleutels THJA, Donkers TFW, Hamelers HVM, Buisman CJN, ter Heijne A (2015) Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. Environ Sci Technol 49(3):1929–1935

    CAS  PubMed  Google Scholar 

  31. Borsje C, Liu D, Sleutels TH, Buisman CJ, ter Heijne A (2016) Performance of single carbon granules as perspective for larger scale capacitive bioanodes. J Power Sources 325:690–696

    CAS  Google Scholar 

  32. Danzer J, Kerzenmacher S (2014) Brennstoffzelle zur Filtration von Flüssigkeiten sowie Verwendung (German Patent DE 10 2013 012 663 B3)

    Google Scholar 

  33. Danzer J, Kerzenmacher S (2014) Filtration-active fuel cell (US Patent Application 2016/0190627 A1)

    Google Scholar 

  34. Kipf E, Koch J, Geiger B, Erben J, Richter K, Gescher J, Zengerle R, Kerzenmacher S (2013) Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour Technol 146(0):386–392

    CAS  PubMed  Google Scholar 

  35. Sanchez D, Jacobs D, Gregory K, Huang J, Hu Y, Vidic R, Yun M (2015) Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1. Energies 8(3):1817–1829

    CAS  Google Scholar 

  36. Zhao Y, Nakanishi S, Watanabe K, Hashimoto K (2011) Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells. J Biosci Bioeng 112(1):63–66

    CAS  PubMed  Google Scholar 

  37. Feng C, Le M, Li F, Mai H, Lang X, Fan S (2010) A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25(6):1516–1520

    CAS  PubMed  Google Scholar 

  38. Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130(1):512–518

    CAS  Google Scholar 

  39. Wang Y, Li B, Zeng L, Cui D, Xiang X, Li W (2013) Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosens Bioelectron 41(0):582–588

    CAS  PubMed  Google Scholar 

  40. Brown RK, Harnisch F, Wirth S, Wahlandt H, Dockhorn T, Dichtl N, Schröder U (2014) Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresour Technol 163:206–213

    CAS  PubMed  Google Scholar 

  41. Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K (2008) Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 80(2):325–330

    CAS  PubMed  Google Scholar 

  42. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063

    CAS  PubMed  Google Scholar 

  43. Blanchet E, Desmond E, Erable B, Bridier A, Bouchez T, Bergel A (2015) Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: application to food waste treatment. Bioresour Technol 185:106–115

    CAS  PubMed  Google Scholar 

  44. Zhang BG, Zhao HZ, Zhou SG, Shi CH, Wang C, Ni JR (2009) A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100(23):5687–5693

    CAS  PubMed  Google Scholar 

  45. Ryu JH, Lee HL, Lee YP, Kim TS, Kim MK, Anh D, Tran HT, Ahn DH (2013) Simultaneous carbon and nitrogen removal from piggery wastewater using loop configuration microbial fuel cell. Process Biochem 48(7):1080–1085

    CAS  Google Scholar 

  46. Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D (2013) Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int J Hydrogen Energy 38(8):3497–3502

    CAS  Google Scholar 

  47. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82(5):829–836

    CAS  PubMed  Google Scholar 

  48. Chen L, Tremblay P, Mohanty S, Xu K, Zhang T (2016) Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine. J Mater Chem A 4(21):8395–8401

    CAS  Google Scholar 

  49. Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2(32):13093

    CAS  Google Scholar 

  50. Jourdin L, Freguia S, Flexer V, Keller J (2016) Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 50(4):1982–1989

    CAS  PubMed  Google Scholar 

  51. Pons L, Délia ML, Bergel A (2011) Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes. Bioresour Technol 102(3):2678–2683

    CAS  PubMed  Google Scholar 

  52. Madjarov J, Popat SC, Erben J, Götze A, Zengerle R, Kerzenmacher S (2017) Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance (iR u-drop), double layer capacitance, and junction potential. J Power Sources 356:408–418

    CAS  Google Scholar 

  53. Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38:1926–1939

    CAS  PubMed  Google Scholar 

  54. Ghasemi M, Daud WRW, Hassan SH, Oh S, Ismail M, Rahimnejad M, Jahim JM (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255

    CAS  Google Scholar 

  55. Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475

    CAS  PubMed  Google Scholar 

  56. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344

    CAS  PubMed  Google Scholar 

  57. Cercado-Quezada B, Delia M, Bergel A (2011) Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes. Electrochem Commun 13(5):440–443

    CAS  Google Scholar 

  58. Ringeisen BR, Ray R, Little B (2007) A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources 165:591–597

    CAS  Google Scholar 

  59. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346

    CAS  PubMed  Google Scholar 

  60. Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng 99(5):1065–1073

    CAS  PubMed  Google Scholar 

  61. Liu Y, Harnisch F, Fricke K, Schröder U, Climent V, Feliu JM (2010) The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens Bioelectron 25(9):2167–2171

    CAS  PubMed  Google Scholar 

  62. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal 173(2):259–271

    CAS  Google Scholar 

  63. Manickam SS, Karra U, Huang L, Bui N, Li B, McCutcheon JR (2013) Activated carbon nanofiber anodes for microbial fuel cells. Carbon 53:19–28

    CAS  Google Scholar 

  64. Jiang D, Li B (2009) Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J 47(1–3):31–37

    CAS  Google Scholar 

  65. ElMekawy A, Hegab HM, Losic D, Saint CP, Pant D (2017) Applications of graphene in microbial fuel cells: the gap between promise and reality. Renew Sustain Energy Rev 72:1389–1403

    CAS  Google Scholar 

  66. Xiao L, Damien J, Luo J, Jang HD, Huang J, He Z (2012) Crumpled graphene particles for microbial fuel cell electrodes. J Power Sources 208(0):187–192

    CAS  Google Scholar 

  67. Xie X, Yu G, Liu N, Bao Z, Criddle CS, Cui Y (2012) Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energ Environ Sci 5(5):6862

    CAS  Google Scholar 

  68. Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett 11(1):291–296

    CAS  PubMed  Google Scholar 

  69. Xie X, Ye M, Hu L, Liu N, McDonough JR, Chen W, Alshareef HN, Criddle CS, Cui Y (2012) Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ Sci 5:5265–5270

    CAS  Google Scholar 

  70. Shen Y, Zhou Y, Chen S, Yang F, Zheng S, Hou H (2014) Carbon nanofibers modified graphite felt for high performance anode in high substrate concentration microbial fuel cells. Sci World J 2014:130185

    Google Scholar 

  71. Wang J, Li M, Liu F, Chen S (2016) Stainless steel mesh supported carbon nanofibers for electrode in bioelectrochemical system. J Nanomater 2016:1–5

    Google Scholar 

  72. Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119

    CAS  PubMed  Google Scholar 

  73. Yuan Y, Zhou S, Liu Y, Tang J (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47(24):14525–14532

    CAS  PubMed  Google Scholar 

  74. Chen S, Liu Q, He G, Zhou Y, Hanif M, Peng X, Wang S, Hou H (2012) Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. J Mater Chem 22(35):18609

    CAS  Google Scholar 

  75. Dumas C, Basseguy R, Bergel A (2008) Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim Acta 53(16):5235–5241

    CAS  Google Scholar 

  76. Dumas C, Mollica A, Féron D, Basseguy R, Etcheverry L, Bergel A (2008) Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour Technol 99(18):8887–8894

    CAS  PubMed  Google Scholar 

  77. Zhu X, Logan BE (2014) Copper anode corrosion affects power generation in microbial fuel cells. J Chem Technol Biotechnol 89(3):471–474

    CAS  Google Scholar 

  78. Dutta K, Kundu PP (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym Rev 54(3):401–435

    CAS  Google Scholar 

  79. Lai B, Tang X, Li H, Du Z, Liu X, Zhang Q (2011) Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens Bioelectron 28(1):373–377

    CAS  PubMed  Google Scholar 

  80. Zhao C, Wu J, Kjelleberg S, Loo JSC, Zhang Q (2015) Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 11(28):3440–3443

    CAS  PubMed  Google Scholar 

  81. Niessen J, Schroder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6(6):571–575

    CAS  Google Scholar 

  82. Bowen CR, Thomas T (2015) Macro-porous Ti2AlC MAX-phase ceramics by the foam replication method. Ceram Int 41(9):12178–12185

    CAS  Google Scholar 

  83. Jain A, Gazzola G, Panzera A, Zanoni M, Marsili E (2011) Visible spectroelectrochemical characterization of Geobacter sulfurreducens biofilms on optically transparent indium tin oxide electrode. Electrochim Acta 56(28):10776–10785

    CAS  Google Scholar 

  84. Jain A, Connolly JO, Woolley R, Krishnamurthy S, Marsili E (2013) Extracellular electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at indium tin oxide and graphite electrodes. Int J Electrochem Sci 8(2):1778–1793

    CAS  Google Scholar 

  85. Lu M, Qian Y, Huang L, Xie X, Huang W (2015) Improving the performance of microbial fuel cells through anode manipulation. ChemPlusChem 80(8):1216–1225

    CAS  Google Scholar 

  86. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9(3):492–496

    Google Scholar 

  87. Feng Y, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. J Power Sources 195(7):1841–1844

    CAS  Google Scholar 

  88. Guo K, Freguia S, Dennis PG, Chen X, Donose BC, Keller J, Gooding JJ, Rabaey K (2013) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47(13):7563–7570

    CAS  PubMed  Google Scholar 

  89. Santoro C, Guilizzoni M, Correa Baena JP, Pasaogullari U, Casalegno A, Li B, Babanova S, Artyushkova K, Atanassov P (2014) The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67:128–139

    CAS  Google Scholar 

  90. Chang S, Liou J, Liu J, Chiu Y, Xu C, Chen B, Chen J (2016) Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J Power Sources 336:99–106

    CAS  Google Scholar 

  91. Li B, Zhou J, Zhou X, Wang X, Li B, Santoro C, Grattieri M, Babanova S, Artyushkova K, Atanassov P, Schuler AJ (2014) Surface modification of microbial fuel cells anodes: approaches to practical design. Electrochim Acta 134:116–126

    CAS  Google Scholar 

  92. Lamp JL, Guest JS, Naha S, Radavich KA, Love NG, Ellis MW, Puri IK (2011) Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells. J Power Sources 196(14):5829–5834

    CAS  Google Scholar 

  93. Tang X, Li H, Du Z, Ng HY (2014) Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells. Bioresour Technol 164:184–188

    CAS  PubMed  Google Scholar 

  94. Kaneko M, Ishikawa M, Song J, Kato S, Hashimoto K, Nakanishi S (2017) Cathodic supply of electrons to living microbial cells via cytocompatible redox-active polymers. Electrochem Commun 75:17–20

    CAS  Google Scholar 

  95. Escapa A, San-Martin MI, Mateos R, Moran A (2015) Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Bioresour Technol 180:72–78

    CAS  PubMed  Google Scholar 

  96. Zhang F, Cheng S, Pant D, van Bogaert G, Logan BE (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11(11):2177–2179

    CAS  Google Scholar 

  97. Gajda I, Greenman J, Melhuish C, Ieropoulos IA (2016) Electricity and disinfectant production from wastewater: microbial fuel cell as a self-powered electrolyser. Sci Rep 6:25571

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen S, He G, Carmona-Martinez AA, Agarwal S, Greiner A, Hou H, Schröder U (2011) Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells. Electrochem Commun 13(10):1026–1029

    CAS  Google Scholar 

  99. Clauwaert P, Mulenga S, Aelterman P, Verstraete W (2009) Litre-scale microbial fuel cells operated in a complete loop. Appl Microbiol Biotechnol 83(2):241–247

    CAS  PubMed  Google Scholar 

  100. Cheng S, Ye Y, Ding W, Pan B (2014) Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode. J Power Sources 248:931–938

    CAS  Google Scholar 

  101. Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70

    CAS  PubMed  Google Scholar 

  102. Ci S, Wen Z, Chen J, He Z (2012) Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem Commun 14(1):71–74

    CAS  Google Scholar 

  103. Yu Y, Guo CX, Yong Y, Li CM, Song H (2015) Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 140:26–33

    CAS  PubMed  Google Scholar 

  104. Qiao Y, Wu X, Ma C, He H, Li CM (2014) A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells. RSC Adv 4(42):21788

    CAS  Google Scholar 

  105. Tang J, Chen S, Yuan Y, Cai X, Zhou S (2015) In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells. Biosens Bioelectron 71:387–395

    CAS  PubMed  Google Scholar 

  106. Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials. Biosens Bioelectron 21(11):2058–2063

    CAS  PubMed  Google Scholar 

  107. Peng X, Yu H, Wang X, Gao N, Geng L, Ai L (2013) Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite. J Power Sources 223(0):94–99

    CAS  Google Scholar 

  108. Peng X, Yu H, Wang X, Zhou Q, Zhang S, Geng L, Sun J, Cai Z (2012) Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresour Technol 121:450–453

    CAS  PubMed  Google Scholar 

  109. Jadhav DA, Ghadge AN, Ghangrekar MM (2015) Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst. Bioresour Technol 191:110–116

    CAS  PubMed  Google Scholar 

  110. Kato S, Hashimoto K, Watanabe K (2013) Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp. Microb Environ 28(1):141–148

    Google Scholar 

  111. Xu S, Liu H, Fan Y, Schaller R, Jiao J, Chaplen F (2012) Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 93(2):871–880

    CAS  PubMed  Google Scholar 

  112. Zhao C, Wang W, Sun D, Wang X, Zhang J, Zhu J (2014) Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Chemistry 20(23):7091–7097

    CAS  PubMed  Google Scholar 

  113. Tang J, Yuan Y, Liu T, Zhou S (2015) High-capacity carbon-coated titanium dioxide core–shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J Power Sources 274:170–176

    CAS  Google Scholar 

  114. Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sources 234:100–106

    CAS  Google Scholar 

  115. Liao Z, Sun J, Sun D, Si R, Yong Y (2015) Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells. Bioresour Technol 192:831–834

    CAS  PubMed  Google Scholar 

  116. Cui H, Du L, Guo P, Zhu B, Luong JHT (2015) Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources 283:46–53

    CAS  Google Scholar 

  117. Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources 224:139–144

    CAS  Google Scholar 

  118. Zhao C, Gai P, Liu C, Wang X, Xu H, Zhang J, Zhu J (2013) Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J Mater Chem A 1(40):12587

    CAS  Google Scholar 

  119. Yuan Y, Kim S (2008) Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. Bull Kor Chem Soc 29(7):1344–1348

    CAS  Google Scholar 

  120. Karthikeyan R, Krishnaraj N, Selvam A, Wong JW, Lee PKH, Leung MKH, Berchmans S (2016) Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour Technol 217:113–120

    CAS  PubMed  Google Scholar 

  121. Yuan Y, Shin H, Kang C, Kim S (2016) Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells. Bioelectrochemistry 108:8–12

    CAS  PubMed  Google Scholar 

  122. Zou Y, Xiang C, Yang L, Sun L, Xu F, Cao Z (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energy 33(18):4856–4862

    CAS  Google Scholar 

  123. Popat SC, Torres CI (2016) Critical transport rates that limit the performance of microbial electrochemistry technologies. Bioresour Technol 215:265–273

    CAS  PubMed  Google Scholar 

  124. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    CAS  PubMed  Google Scholar 

  125. Marcus AK, Torres CI, Rittmann BE (2010) Evaluating the impacts of migration in the biofilm anode using the model PCBIOFILM. Electrochim Acta 55(23):6964–6972

    CAS  Google Scholar 

  126. Bidault F, Brett D, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187(1):39–48

    CAS  Google Scholar 

  127. Bajracharya S, Vanbroekhoven K, Buisman CJN, Pant D, Strik DPBTB (2016) Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res Int 23(22):22292–22308

    CAS  PubMed  Google Scholar 

  128. Chen S, He G, Carmona-Martinez AA, Agarwal S, Greiner A, Hou H, Schröder U (2011) Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells. Electrochem Commun 13(10):1026–1029

    CAS  Google Scholar 

  129. Hou J, Liu Z, Yang S, Zhou Y (2014) Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J Power Sources 258:204–209

    CAS  Google Scholar 

  130. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    CAS  PubMed  Google Scholar 

  131. Sun Y, Wei J, Liang P, Huang X (2011) Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Bioresour Technol 102(23):10886–10891

    CAS  PubMed  Google Scholar 

  132. Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN (2009) Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. Int J Hydrogen Energy 34(24):9655–9661

    CAS  Google Scholar 

  133. Karthikeyan R, Wang B, Xuan J, Wong JWC, Lee PKH, Leung MKH (2015) Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell. Electrochim Acta 157(0):314–323

    CAS  Google Scholar 

  134. Danzer J, Götze A, Abdu S, Kerzenmacher S (2016) A new concept for the integration of microbial fuel cells into membrane bioreactors. In: Proceedings of the 13th IWA leading edge conference on water and wastewater technologies, Jerez de la Frontera

    Google Scholar 

  135. Sleutels THJA, Hamelers HVM, Buisman CJN (2011) Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance. Bioresour Technol 102(1):399–403

    CAS  PubMed  Google Scholar 

  136. Hatzell KB, Boota M, Gogotsi Y (2015) Materials for suspension (semi-solid) electrodes for energy and water technologies. Chem Soc Rev 44(23):8664–8687

    CAS  PubMed  Google Scholar 

  137. Liu J, Zhang F, He W, Zhang X, Feng Y, Logan BE (2014) Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. J Power Sources 261(0):278–284

    CAS  Google Scholar 

  138. Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1(5):e00190-10

    PubMed  PubMed Central  Google Scholar 

  139. Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34(11):879–894

    CAS  PubMed  Google Scholar 

  140. Martin ME, Richter H, Saha S, Angenent LT (2016) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113(3):531–539

    CAS  PubMed  Google Scholar 

  141. Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29

    CAS  Google Scholar 

  142. Wang S, Huang H, Kahnt J, Mueller AP, Kopke M, Thauer RK (2013) NADP-specific electron-bifurcating FeFe-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195(19):4373–4386

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gaddy JL, Arora DK, Ko C, Phillips JR, Basu R, Wikstrom CV, Clausen EC (2007) Methods for increasing the production of ethanol from microbial fermentation (US Patent US7285402)

    Google Scholar 

  144. Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Kopke M (2016) Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Kerzenmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kerzenmacher, S. (2017). Engineering of Microbial Electrodes. In: Harnisch, F., Holtmann, D. (eds) Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, vol 167. Springer, Cham. https://doi.org/10.1007/10_2017_16

Download citation

Publish with us

Policies and ethics