Skip to main content

Promoter and Terminator Discovery and Engineering

  • Chapter
  • First Online:
Synthetic Biology – Metabolic Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 162))

Abstract

Control of gene expression is crucial to optimize metabolic pathways and synthetic gene networks. Promoters and terminators are stretches of DNA upstream and downstream (respectively) of genes that control both the rate at which the gene is transcribed and the rate at which mRNA is degraded. As a result, both of these elements control net protein expression from a synthetic construct. Thus, it is highly important to discover and engineer promoters and terminators with desired characteristics. This chapter highlights various approaches taken to catalogue these important synthetic elements. Specifically, early strategies have focused largely on semi-rational techniques such as saturation mutagenesis to diversify native promoters and terminators. Next, in an effort to reduce the length of the synthetic biology design cycle, efforts in the field have turned towards the rational design of synthetic promoters and terminators. In this vein, we cover recently developed methods such as hybrid engineering, high throughput characterization, and thermodynamic modeling which allow finer control in the rational design of novel promoters and terminators. Emphasis is placed on the methodologies used and this chapter showcases the utility of these methods across multiple host organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5:647–659. doi:10.1002/biot.200900247

    Article  CAS  Google Scholar 

  2. Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8:46–58. doi:10.1002/biot.201200120

    Article  CAS  Google Scholar 

  3. Paddon CJ, Westfall PJ, Pitera DJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. doi:10.1038/nature12051

    Article  CAS  Google Scholar 

  4. Gatignol A, Dassain M, Tiraby G (1990) Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 91:35–41

    Article  CAS  Google Scholar 

  5. Hauf J, Zimmermann F, Müller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26:688–698

    Article  CAS  Google Scholar 

  6. Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Article  CAS  Google Scholar 

  7. Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333

    Article  CAS  Google Scholar 

  8. Diderich JA, Schepper M, van Hoek P et al (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359. doi:10.1074/jbc.274.22.15350

    Google Scholar 

  9. Pontiller J, Gross S, Thaisuchat H et al (2008) Identification of CHO endogenous promoter elements based on a genomic library approach. Mol Biotechnol 39:135–139. doi:10.1007/s12033-008-9044-9

    Article  CAS  Google Scholar 

  10. Pontiller J, Maccani A, Baumann M et al (2010) Identification of CHO endogenous gene regulatory elements. Mol Biotechnol 45:235–240. doi:10.1007/s12033-010-9278-1

    Article  CAS  Google Scholar 

  11. Chen J, Haverty J, Deng L et al (2013) Identification of a novel endogenous regulatory element in Chinese hamster ovary cells by promoter trap. J Biotechnol 167:255–261. doi:10.1016/j.jbiotec.2013.07.001

    Article  CAS  Google Scholar 

  12. Xu X, Nagarajan H, Lewis NE et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741. doi:10.1038/nbt.1932

    Article  CAS  Google Scholar 

  13. Le H, Vishwanathan N, Kantardjieff A et al (2013) Dynamic gene expression for metabolic engineering of mammalian cells in culture. Metab Eng 20:212–220. doi:10.1016/j.ymben.2013.09.004

    Article  CAS  Google Scholar 

  14. Partow S, Siewers V, Bjørn S et al (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964. doi:10.1002/yea.1806

    Article  CAS  Google Scholar 

  15. Sun J, Shao Z, Zhao H et al (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2082–2092. doi:10.1002/bit.24481

    Article  CAS  Google Scholar 

  16. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222. doi:10.1007/s00253-006-0465-8

    Article  CAS  Google Scholar 

  17. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  Google Scholar 

  18. Elvin CM, Thompson PR, Argall ME et al (1990) Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene 87:123–126

    Article  CAS  Google Scholar 

  19. Walfridsson M, Hallborn J, Penttilä M et al (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190

    CAS  Google Scholar 

  20. Lu C, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73:6072–6077. doi:10.1128/AEM.00955-07

    Article  CAS  Google Scholar 

  21. Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M et al (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73:4881–4891. doi:10.1128/AEM.00177-07

    Article  CAS  Google Scholar 

  22. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723. doi:10.1038/nrmicro2186

    Article  CAS  Google Scholar 

  23. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358. doi:10.1126/science.1193990

    Article  CAS  Google Scholar 

  24. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12:197–214. doi:10.1111/j.1567-1364.2011.00769.x

    Article  CAS  Google Scholar 

  25. Addison CL, Hitt M, Kunsken D, Graham FL (1997) Comparison of the human versus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors. J Gen Virol 78(Pt 7):1653–1661

    Article  CAS  Google Scholar 

  26. Xia W, Bringmann P, McClary J et al (2006) High levels of protein expression using different mammalian CMV promoters in several cell lines. Protein Expr Purif 45:115–124. doi:10.1016/j.pep.2005.07.008

    Article  CAS  Google Scholar 

  27. Kim M, O’Callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 108:2434–2446. doi:10.1002/bit.23189

    Article  CAS  Google Scholar 

  28. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Article  CAS  Google Scholar 

  29. Nevoigt E, Kohnke J, Fischer CR et al (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72:5266–5273. doi:10.1128/AEM.00530-06

    Article  CAS  Google Scholar 

  30. Boshart M, Weber F, Jahn G et al (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530

    Article  CAS  Google Scholar 

  31. Dorsch-Häsler K, Keil GM, Weber F et al (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci U S A 82:8325–8329

    Article  Google Scholar 

  32. Nelson JA, Reynolds-Kohler C, Smith BA (1987) Negative and positive regulation by a short segment in the 5′-flanking region of the human cytomegalovirus major immediate-early gene. Mol Cell Biol 7:4125–4129

    Article  CAS  Google Scholar 

  33. Prentice HL, Tonkin CJD, Caamano L, Sisk WP (2007) High level expression of proteins using sequences from the ferritin heavy chain gene locus. J Biotechnol 128:50–60. doi:10.1016/j.jbiotec.2006.09.021

    Article  CAS  Google Scholar 

  34. Thaisuchat H, Baumann M, Pontiller J et al (2011) Identification of a novel temperature sensitive promoter in CHO cells. BMC Biotechnol 11:51. doi:10.1186/1472-6750-11-51

    Article  CAS  Google Scholar 

  35. Fan L, Kadura I, Krebs LE et al (2013) Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. J Biotechnol 168:652–658. doi:10.1016/j.jbiotec.2013.08.021

    Article  CAS  Google Scholar 

  36. Mariati NYK, Chao S-H et al (2010) Evaluating regulatory elements of human cytomegalovirus major immediate early gene for enhancing transgene expression levels in CHO K1 and HEK293 cells. J Biotechnol 147:160–163. doi:10.1016/j.jbiotec.2010.02.022

    Article  CAS  Google Scholar 

  37. Nair TM, Kulkarni BD (1994) On the consensus structure within the E. coli promoters. Biophys Chem 48:383–393

    Article  CAS  Google Scholar 

  38. Gruber BTM, Gross CA (2003) Assay of Escherichia coli RNA polymerase: sigma–core interactions. Methods Enzymol 370:206–212

    Google Scholar 

  39. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences. Appl Environ Microbiol 64:82–87

    Google Scholar 

  40. Juven-Gershon T, Hsu J-Y, Kadonaga JT (2006) Perspectives on the RNA polymerase II core promoter. Biochem Soc Trans 34:1047–1050. doi:10.1042/BST0341047

    Article  CAS  Google Scholar 

  41. Juven-Gershon T, Hsu J-Y, Theisen JW, Kadonaga JT (2008) The RNA polymerase II core promoter – the gateway to transcription. Curr Opin Cell Biol 20:253–259. doi:10.1016/j.ceb.2008.03.003

    Article  CAS  Google Scholar 

  42. Struhl K (1984) Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence. Proc Natl Acad Sci U S A 81:7865–7869

    Article  CAS  Google Scholar 

  43. Struhl K (1995) Yeast transcriptional regulatory mechanisms. Annu Rev Genet 29:651–674. doi:10.1146/annurev.ge.29.120195.003251

    Article  CAS  Google Scholar 

  44. Jeppsson M, Johansson B, Jensen PR et al (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:1263–1272. doi:10.1002/yea.1043

    Article  CAS  Google Scholar 

  45. Drazinic CM, Smerage JB, López MC, Baker HV (1996) Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol Cell Biol 16:3187–3196

    Article  CAS  Google Scholar 

  46. Tornøe J, Kusk P, Johansen TE, Jensen PR (2002) Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites. Gene 297:21–32. doi:10.1016/S0378-1119(02)00878-8

    Article  Google Scholar 

  47. De Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80:21–25

    Article  Google Scholar 

  48. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359. doi:10.1038/nbt.2149

    Article  CAS  Google Scholar 

  49. Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77:7905–7914. doi:10.1128/AEM.05763-11

    Article  CAS  Google Scholar 

  50. Hsu LM (2002) Promoter clearance and escape in prokaryotes. Biochim Biophys Acta 1577:191–207. doi:10.1016/S0167-4781(02)00452-9

    Article  CAS  Google Scholar 

  51. Blazeck J, Garg R, Reed B, Alper HS (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng 109:2884–2895. doi:10.1002/bit.24552

    Article  CAS  Google Scholar 

  52. Guarente L, Hoar E (1984) Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the “TATA box”. Proc Natl Acad Sci U S A 81:7860–7864

    Article  CAS  Google Scholar 

  53. Guarente L, Lalonde B, Gifford P, Alani E (1984) Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36:503–511

    Article  CAS  Google Scholar 

  54. Van Slyke C, Grayhack EJ (2003) The essential transcription factor Reb1p interacts with the CLB2 UAS outside of the G2/M control region. Nucleic Acids Res 31:4597–4607

    Article  CAS  Google Scholar 

  55. Rosenkrantz M, Kell CS, Pennell EA et al (1994) Distinct upstream activation regions for glucose-repressed and derepressed expression of the yeast citrate synthase gene CIT1. Curr Genet 25:185–195

    Article  CAS  Google Scholar 

  56. West RW, Yocum RR, Ptashne M (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol Cell Biol 4:2467–2478

    Article  CAS  Google Scholar 

  57. Guarente L, Ptashne M (1981) Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 78:2199–2203

    Article  CAS  Google Scholar 

  58. Kim D, Kim JD, Baek K et al. (2003) Improved mammalian expression systems by manipulating transcriptional termination regions. Biotechnol Prog 19:1620–1622. doi:10.1021/bp0341186

    Google Scholar 

  59. Blazeck J, Reed B, Garg R et al (2013) Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Appl Microbiol Biotechnol 97:3037–3052. doi:10.1007/s00253-012-4421-5

    Article  CAS  Google Scholar 

  60. Blazeck J, Hill A, Liu L et al (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131. doi:10.1038/ncomms4131

    Article  CAS  Google Scholar 

  61. Chao S-H, Harada JN, Hyndman F et al (2004) PDX1, a cellular homeoprotein, binds to and regulates the activity of human cytomegalovirus immediate early promoter. J Biol Chem 279:16111–16120. doi:10.1074/jbc.M312304200

    Article  CAS  Google Scholar 

  62. Berg DT, Mooney PQ, Baez M, Grinnell BW (1988) Tandem promoter/enhancer units create a versatile regulatory element for the expression of genes in mammalian cells. Nucleic Acids Res 16:1635

    Article  CAS  Google Scholar 

  63. Gehrke S, Jérôme V, Müller R (2003) Chimeric transcriptional control units for improved liver-specific transgene expression. Gene 322:137–143

    Article  CAS  Google Scholar 

  64. Magnusson T, Haase R, Schleef M et al (2011) Sustained, high transgene expression in liver with plasmid vectors using optimized promoter-enhancer combinations. J Gene Med 13:382–391. doi:10.1002/jgm.1585

    Article  CAS  Google Scholar 

  65. Sumitomo Y, Higashitsuji H, Higashitsuji H et al (2012) Identification of a novel enhancer that binds Sp1 and contributes to induction of cold-inducible RNA-binding protein (cirp) expression in mammalian cells. BMC Biotechnol 12:72. doi:10.1186/1472-6750-12-72

    Article  CAS  Google Scholar 

  66. Garg A, Lohmueller JJ, Silver PA, Armel TZ (2012) Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res 40:7584–7595. doi:10.1093/nar/gks404

    Google Scholar 

  67. Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One 7:1–11. doi:10.1371/journal.pone.0033279

    Google Scholar 

  68. Rong M, He B, McAllister WT, Durbin RK (1998) Promoter specificity determinants of T7 RNA polymerase. Proc Natl Acad Sci U S A 95:515–519

    Article  CAS  Google Scholar 

  69. Temme K, Hill R, Segall-Shapiro TH et al (2012) Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 40:8773–8781. doi:10.1093/nar/gks597

    Article  CAS  Google Scholar 

  70. Shis DL, Bennett MR (2013) Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc Natl Acad Sci U S A 110:5028–5033. doi:10.1073/pnas.1220157110

    Article  CAS  Google Scholar 

  71. Segall-Shapiro TH, Meyer AJ, Ellington AD et al (2014) A “resource allocator” for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol 10:742

    Article  CAS  Google Scholar 

  72. Vogl T, Ruth C, Pitzer J et al (2014) Synthetic core promoters for Pichia pastoris. ACS Synth Biol 3:188–191. doi:10.1021/sb400091p

    Article  CAS  Google Scholar 

  73. Redden H, Alper HS (2015) The development and characterization of synthetic minimal yeast promoters. Nat Commun 6:7810. doi:10.1038/ncomms8810

    Article  CAS  Google Scholar 

  74. Schlabach MR, Hu JK, Li M, Elledge SJ (2010) Synthetic design of strong promoters. Proc Natl Acad Sci U S A 107:2538–2543. doi:10.1073/pnas.0914803107

    Article  CAS  Google Scholar 

  75. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379. doi:10.1038/nrg2775

    Article  CAS  Google Scholar 

  76. Way JC, Collins JJ, Keasling JD, Silver PA (2014) Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157:151–161. doi:10.1016/j.cell.2014.02.039

    Article  CAS  Google Scholar 

  77. Kosuri S, Eroshenko N, LeProust EM et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299. doi:10.1038/nbt.1716

    Article  CAS  Google Scholar 

  78. Kosuri S, Goodman DB, Cambray G et al (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A 110:14024–14029. doi:10.1073/pnas.1301301110

    Article  CAS  Google Scholar 

  79. Sharon E, Kalma Y, Sharp A et al (2012) Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol 30:521–530. doi:10.1038/nbt.2205

    Article  CAS  Google Scholar 

  80. Patwardhan RP, Hiatt JB, Witten DM et al (2012) Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol 30:265–270. doi:10.1038/nbt.2136

    Article  CAS  Google Scholar 

  81. Lee D, Karchin R, Beer MA (2011) Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res 21:2167–2180. doi:10.1101/gr.121905.111

    Article  CAS  Google Scholar 

  82. Fletez-Brant C, Lee D, McCallion AS, Beer MA (2013) kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets. Nucleic Acids Res 41:W544–W556. doi:10.1093/nar/gkt519

    Article  Google Scholar 

  83. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502. doi:10.1126/science.1141319

    Article  CAS  Google Scholar 

  84. Giardina C, Lis JT (1993) DNA melting on yeast RNA polymerase II promoters. Science 261:759–762

    Article  CAS  Google Scholar 

  85. Sugihara F, Kasahara K, Kokubo T (2011) Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 39:59–75. doi:10.1093/nar/gkq741

    Article  CAS  Google Scholar 

  86. Lubliner S, Keren L, Segal E (2013) Sequence features of yeast and human core promoters that are predictive of maximal promoter activity. Nucleic Acids Res 41:5569–5581. doi:10.1093/nar/gkt256

    Article  CAS  Google Scholar 

  87. Lubliner S, Regev I, Lotan-pompan M et al (2015) Core promoter sequence in yeast is a major determinant of expression level. 1008–1017. doi:10.1101/gr.188193.114.1008

  88. Salis HM, Mirsky EA, Voigt CA (2010) Automated design of synthetic ribosome binding sites to precisely control protein expression. Nat Biotechnol 27:946–950. doi:10.1038/nbt.1568.Automated

  89. Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42. doi:10.1016/B978-0-12-385120-8.00002-4

    Article  CAS  Google Scholar 

  90. Gertz J, Cohen BA (2009) Environment-specific combinatorial cis-regulation in synthetic promoters. 1–9. doi:10.1038/msb2009.1

  91. Iyer V, Struhl K (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14:2570–2579

    CAS  Google Scholar 

  92. Mogno I, Vallania F, Mitra RD, Cohen BA (2010) TATA is a modular component of synthetic promoters. Genome Res 20:1391–1397. doi:10.1101/gr.106732.110

    Google Scholar 

  93. Abeel T, Saeys Y, Bonnet E et al (2008) Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res 18:310–323. doi:10.1101/gr.6991408

    Article  CAS  Google Scholar 

  94. Gan Y, Guan J, Zhou S (2012) A comparison study on feature selection of DNA structural properties for promoter prediction. BMC Bioinformatics 13:4. doi:10.1186/1471-2105-13-4

    Article  Google Scholar 

  95. Grabherr MG, Pontiller J, Mauceli E et al (2011) Exploiting nucleotide composition to engineer promoters. PLoS One 6, e20136. doi:10.1371/journal.pone.0020136

    Article  CAS  Google Scholar 

  96. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294. doi:10.1016/S0092-8674(00)81958-3

    Article  CAS  Google Scholar 

  97. Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709. doi:10.1016/S0092-8674(04)00205-3

    Article  CAS  Google Scholar 

  98. Anderson JD, Widom J (2001) Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol Cell Biol 21:3830–3839. doi:10.1128/MCB.21.11.3830-3839.2001

    Article  CAS  Google Scholar 

  99. De Boer CG, Hughes TR (2014) Poly-dA:dT tracts form an in vivo nucleosomal turnstile. PLoS One 9, e110479. doi:10.1371/journal.pone.0110479

    Article  CAS  Google Scholar 

  100. Raveh-Sadka T, Levo M, Shabi U et al (2012) Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet 44:743–750. doi:10.1038/ng.2305

    Article  CAS  Google Scholar 

  101. Swindle CS, Kim HG, Klug CA (2004) Mutation of CpGs in the murine stem cell virus retroviral vector long terminal repeat represses silencing in embryonic stem cells. J Biol Chem 279:34–41. doi:10.1074/jbc.M309128200

    Article  CAS  Google Scholar 

  102. Xi L, Fondufe-Mittendorf Y, Xia L et al (2010) Predicting nucleosome positioning using a duration hidden Markov model. BMC Bioinformatics 11:346. doi:10.1186/1471-2105-11-346

    Article  CAS  Google Scholar 

  103. Curran KA, Crook NC, Karim AS et al (2014) Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat Commun 5:4002. doi:10.1038/ncomms5002

  104. Keung AJ, Joung JK, Khalil AS, Collins JJ (2015) Chromatin regulation at the frontier of synthetic biology. Nat Rev Genet. doi:10.1038/nrg3900

    Google Scholar 

  105. Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420. doi:10.1158/1535-7163.MCT-08-0860

    Article  CAS  Google Scholar 

  106. Ernst J, Kheradpour P, Mikkelsen TS et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49. doi:10.1038/nature09906

    Article  CAS  Google Scholar 

  107. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47. doi:10.1038/nrm3036

    Article  CAS  Google Scholar 

  108. Onder TT, Kara N, Cherry A et al (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602. doi:10.1038/nature10953

    Article  CAS  Google Scholar 

  109. Rheinbay E, Louis DN, Bernstein BE, Suvà ML (2012) A tell-tail sign of chromatin: histone mutations drive pediatric glioblastoma. Cancer Cell 21:329–331. doi:10.1016/j.ccr.2012.03.001

    Article  CAS  Google Scholar 

  110. Schuster-Böckler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488:504–507. doi:10.1038/nature11273

    Article  CAS  Google Scholar 

  111. Wang X, Chen J, Quinn P (2012) Reprogramming microbial metabolic pathways. Zhurnal Eksp i Teor Fiz 181–201. doi:10.1007/978-94-007-5055-5

    Google Scholar 

  112. Keung AJ, Bashor CJ, Kiriakov S et al (2014) Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158:110–120. doi:10.1016/j.cell.2014.04.047

    Article  CAS  Google Scholar 

  113. Du L, Gao R, Forster AC (2009) Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnol Bioeng 104:1189–1196. doi:10.1002/bit.22491

    Article  CAS  Google Scholar 

  114. Du L, Villarreal S, Forster AC (2012) Multigene expression in vivo: supremacy of large versus small terminators for T7 RNA polymerase. Biotechnol Bioeng 109:1043–1050. doi:10.1002/bit.24379

    Article  CAS  Google Scholar 

  115. Carter AD, Morris CE, McAllister WT (1981) Revised transcription map of the late region of bacteriophage T7 DNA. J Virol 37:636–642

    CAS  Google Scholar 

  116. Redden H, Morse N, Alper HS (2014) The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 1–12. doi:10.1111/1567-1364.12188

  117. Sleight SC, Bartley BA, Lieviant JA, Sauro HM (2010) Designing and engineering evolutionary robust genetic circuits. J Biol Eng 4:12. doi:10.1186/1754-1611-4-12

    Google Scholar 

  118. Renda BA, Hammerling MJ, Barrick JE (2014) Engineering reduced evolutionary potential for synthetic biology. Mol Biosyst 10:1668–1678. doi:10.1039/c3mb70606k

    Google Scholar 

  119. Abe H, Aiba H (1996) Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization. Biochimie 78:1035–1042

    Article  CAS  Google Scholar 

  120. Yamanishi M, Ito Y, Kintaka R et al (2013) A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a “Terminatome” toolbox BT. ACS Synth Biol 2:337–347

    Article  CAS  Google Scholar 

  121. Curran KA, Karim AS, Gupta A, Alper HS (2013) Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab Eng 19:88–97. doi:10.1016/j.ymben.2013.07.001

    Article  CAS  Google Scholar 

  122. Von Hippel PH, Yager TD (1991) Transcript elongation and termination are competitive kinetic processes. Proc Natl Acad Sci U S A 88:2307–2311

    Article  Google Scholar 

  123. Gama-Castro S, Jiménez-Jacinto V, Peralta-Gil M et al (2008) RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36:D120–D124. doi:10.1093/nar/gkm994

    Article  CAS  Google Scholar 

  124. Chen Y-J, Liu P, Nielsen AAK et al (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10:659–664. doi:10.1038/nmeth.2515

    Google Scholar 

  125. Nag A, Narsinh K, Martinson HG (2007) The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 14:662–669. doi:10.1038/nsmb1253

    Article  CAS  Google Scholar 

  126. Mairhofer J, Wittwer A, Cserjan-puschmann M, Striedner G (2014) Synthetic termination signal capable of improving bioprocess. ACS Synth Biol. doi:10.1021/sb5000115

    Google Scholar 

  127. Guo Z, Sherman F (1996) Signals sufficient for 3′-end formation of yeast mRNA. Mol Cell Biol 16:2772–2776

    Article  CAS  Google Scholar 

  128. Geisberg JV, Moqtaderi Z, Fan X et al (2014) Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 156:812–824. doi:10.1016/j.cell.2013.12.026

    Article  CAS  Google Scholar 

  129. Curran KA, Morse NJ, Markham KA et al (2015) Short, synthetic terminators for improved heterologous gene expression in yeast. ACS Synth Biol 4(7):824–832. doi:10.1021/sb5003357

    Google Scholar 

  130. Mischo HE, Proudfoot NJ (2013) Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim Biophys Acta 1829:174–185. doi:10.1016/j.bbagrm.2012.10.003

    Article  CAS  Google Scholar 

  131. Shalem O, Carey L, Zeevi D et al (2013) Measurements of the impact of 3′ end sequences on gene expression reveal wide range and sequence dependent effects. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002934

    Google Scholar 

  132. Shalem O, Sharon E, Lubliner S et al (2015) Systematic dissection of the sequence determinants of gene 3′ end mediated expression control. PLoS Genet 11:e1005147. doi:10.1371/journal.pgen.1005147

    Article  CAS  Google Scholar 

  133. Yager TD, von Hippel PH (1991) A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli. Biochemistry 30:1097–1118

    Article  CAS  Google Scholar 

  134. Cambray G, Guimaraes JC, Mutalik VK et al (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41:5139–5148. doi:10.1093/nar/gkt163

    Article  CAS  Google Scholar 

  135. Leavitt JM, Alper HS (2015) Advances and current limitations in transcript-level control of gene expression. Curr Opin Biotechnol 34:98–104. doi:10.1016/j.copbio.2014.12.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal S. Alper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deaner, M., Alper, H.S. (2016). Promoter and Terminator Discovery and Engineering. In: Zhao, H., Zeng, AP. (eds) Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 162. Springer, Cham. https://doi.org/10.1007/10_2016_8

Download citation

Publish with us

Policies and ethics