Skip to main content

Therapeutic Human Cells: Manufacture for Cell Therapy/Regenerative Medicine

  • Chapter
  • First Online:
Disposable Bioreactors II

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADSCs:

Adipose-derived stem cells

ATMPs:

Advanced therapeutic medicinal products

API:

Active pharmaceutical ingredient

BSE:

Bovine spongiform encephalopathy

CF:

Cell factory

CQAs:

Critical quality attributes

CPD:

Cumulative population doublings

CF:

Cell factory

CS:

Cell stack

CTP:

Cell therapy product

cGMP:

Current good manufacturing practice

DCs:

Dendritic cells

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

ELISA:

Enzyme-linked immunosorbent assay

EMA:

European Medicines Agency

FACS:

Fluorescence activated cell sorting

FBS:

Fetal bovine serum

flt-3L:

Fms-related tyrosine kinase 3 ligand

GFs:

Growth factors

GMCSF:

Granulocyte monocyte colony stimulating factor

GMP:

Good manufacturing practice

HSA:

Human serum albumin

HS:

Hyperstack

HSCs:

Hematopoietic stem cells

hMSCs:

Human mesenchymal stem cells

IDO:

Indole amine oxygenase

IL:

Interleukin

IPC:

In process control

LOD:

Limits of detection

MLR:

Mixed lymphocyte reaction

MHC:

Major histocompatibility complex

MSC:

Mesenchymal stem cell

MoA:

Mode of action

mRNA:

Messenger ribonucleic acid

NK:

Natural killer cell

PGE:

Prostaglandin

QC:

Quality control

RPM:

Revolutions per minute

SCF:

Stem cell factor

TCR:

T cell receptor

TFF:

Tangential flow filtration

TILS:

Tumor infiltrating lymphocytes

TNF:

Tumor necrosis factor

TPO:

Thrombopoietin

TREGS:

T regulatory cells

References

  1. Abbott A (2012) Cell rewind wins medicine Nobel. Nature 490:151–152

    Article  CAS  Google Scholar 

  2. Grady D (2013) Cell therapy promising for acute type of leukemia. NYTimes.com. http://www.nytimes.com/2013/03/21/health/altered-t-cell-therapy-shows-promise-for-acute-leukemia.html. Accessed 5 April 2013

  3. Lipscomb MF, Masten BJ (2002) Dendritic cells: immune regulators in health and disease. Physiol Rev 82:97–130

    CAS  Google Scholar 

  4. June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Investig 117:1466–1476

    Article  CAS  Google Scholar 

  5. Frankel TL et al (2010) Both CD4 and CD8 T cells mediate equally effective in vivo tumor treatment when engineered with a highly avid TCR targeting tyrosinase. J Immunol 184:5988–5998

    Article  CAS  Google Scholar 

  6. Somerville RPT, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor. J Transl Med 10:69

    Article  Google Scholar 

  7. Powell DJ, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  CAS  Google Scholar 

  8. Vera JF et al (2010) Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 33:305–315

    Article  CAS  Google Scholar 

  9. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2005) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26:332–342

    Article  Google Scholar 

  10. Hollyman D et al (2009) Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 32:169–180

    Article  CAS  Google Scholar 

  11. Tran C-A et al (2007) Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. J Immunother 30:644–654

    Article  Google Scholar 

  12. Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  Google Scholar 

  13. Jarnjak-Jankovic S, Hammerstad H, Saebøe-Larssen S, Kvalheim G, Gaudernack G (2007) A full scale comparative study of methods for generation of functional dendritic cells for use as cancer vaccines. BMC cancer 7:119

    Article  Google Scholar 

  14. Bürdek M et al (2010) Three-day dendritic cells for vaccine development: antigen uptake, processing and presentation. J Transl Med 8:90

    Article  Google Scholar 

  15. Butterfield LH, Gooding W, Whiteside TL (2008) Development of a potency assay for human dendritic cells: IL-12p70 production. J Immunother 31:89–100

    Article  CAS  Google Scholar 

  16. DeBenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG (2011) Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother 34:45–57

    Article  CAS  Google Scholar 

  17. Romagné F, Vivier E (2011) Natural killer cell-based therapies. F1000 medicine reports 3:9

    Google Scholar 

  18. Friedenstein AY, Chailakhlan RK, Lalykina KS (1970) The development of fibroblast colonies of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinetics 3:393–403

    CAS  Google Scholar 

  19. Friedenstein AY, Kuralesova AI (1971) Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation 12:99–108

    Article  CAS  Google Scholar 

  20. Afanasyev BV et al (2010) A. J. Friedenstein, founder of the mesenchymal stem cell concept. Transplantation 1:35–38

    Google Scholar 

  21. Caplan AI (1995) Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect Tissue Res 31:S9–S14

    Article  CAS  Google Scholar 

  22. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  23. Young HE et al (1995) Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 202:137–144

    Article  CAS  Google Scholar 

  24. Arinzeh TL et al (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg 85:1927–1935

    Google Scholar 

  25. Jameel MN et al (2010) Long-term functional improvement and gene expression changes after bone marrow-derived multipotent progenitor cell transplantation in myocardial infarction. Am J Physiol. Heart Circ Physiol 298:H1348–H1356

    Article  CAS  Google Scholar 

  26. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  27. Jones E, Mcgonagle D (2008) Human bone marrow mesenchymal stem cells in vivo. Rev Lit Arts Am 47(2):126–131

    Google Scholar 

  28. Carmen J, Burger SR, McCaman M, Rowley JA (2012) Developing assays to address identity, potency, purity and safety: cell characterization in cell therapy process development. Regen Med 7:85–100

    Article  Google Scholar 

  29. Reddi AH (1994) Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. J Cell Biochem 56:192–195

    Article  CAS  Google Scholar 

  30. Caplan Arnold I, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  Google Scholar 

  31. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902

    Article  Google Scholar 

  32. Schinköthe T, Bloch W, Schmidt A (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206

    Article  Google Scholar 

  33. De Kok IJ et al (2003) Investigation of allogeneic mesenchyrnal stem cell-based alveolar bone formation: preliminary findings. Clin Oral Implant Res 14:481–489

    Article  Google Scholar 

  34. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  Google Scholar 

  35. Kinnaird T et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  Google Scholar 

  36. Rehman J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  Google Scholar 

  37. Moon MH et al (2006) Cellular physiology biochemistry and biochemistry human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 739:279–290

    Article  Google Scholar 

  38. Weiss ML et al (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem cells (Dayton, Ohio) 24:781–792

    Google Scholar 

  39. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH (2008) Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 107:141–151

    Article  CAS  Google Scholar 

  40. Urbán VS et al (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253

    Article  Google Scholar 

  41. Yan L et al (2007) Cell tracing techniques in stem cell transplantation. Stem Cell Rev 3:265–269. doi:10.1007/s12015-007-9004-y

    Article  Google Scholar 

  42. Kraitchman DL et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  Google Scholar 

  43. Martin B, Meyers J, Kuang J, Smith A (2002) Allogeneic mesenchymal stem cell engraftment in the infarcted rat myocardium: timing and delivery route. Bone Marrow Transpl 29:S144

    Google Scholar 

  44. Liechty KW et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  CAS  Google Scholar 

  45. Lalu MM et al (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE 7:e47559

    Article  CAS  Google Scholar 

  46. Wang Y, Han Z-B, Song Y-P, Han ZC (2012) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012:652034

    Google Scholar 

  47. Saito T, Kuang J-Q, Bittira B, Al-Khaldi A, Chiu RC-J (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thor Surg 74:19–24

    Article  Google Scholar 

  48. Luria EA, Panasyuk, GN, Friedenstein AY (1972) Effect of tuberculin and freund's adjuvant on the formation of fibroblast colonies. Cell Immunol 3:133–137

    Google Scholar 

  49. Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2:8

    Article  Google Scholar 

  50. Terada N et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  CAS  Google Scholar 

  51. Ying Q-L, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    Article  CAS  Google Scholar 

  52. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    Article  CAS  Google Scholar 

  53. Hanly WC, Artwohl JE, Bennett BT (1995) Review of polyclonal antibody production procedures in mammals and poultry. ILAR J 37:93–118

    Article  Google Scholar 

  54. Brindley D et al (2012) Peak serum: implications of serum supply for cell therapy manufacturing. Regen Med 7:7–13

    Article  Google Scholar 

  55. Van der Velden-de Groot CA (1995) Micro-carrier technology, present status and perspective. Cytotechnology 18:51–56

    Article  Google Scholar 

  56. Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33

    Article  CAS  Google Scholar 

  57. Shiloach J, Fass R (2005) Growing E. coli to high cell density–a historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  Google Scholar 

  58. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    Article  CAS  Google Scholar 

  59. Kennard ML et al (2009) Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104:526–539

    Article  CAS  Google Scholar 

  60. Lim Y et al (2010) Engineering mammalian cells in bioprocessing—current achievements and future perspectives. Biotechnol Appl Biochem 55:175–189

    Article  CAS  Google Scholar 

  61. Broxmeyer HE et al (2003) High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci USA 100:645–650

    Article  CAS  Google Scholar 

  62. Veber DF et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  63. Park K et al (2008) Living cantilever arrays” for characterization of mass of single live cells in fluids. Lab Chip 8:1034–1041

    Article  CAS  Google Scholar 

  64. Levy J (2005) The great pyramid of Giza: measuring length, area, volume, and angles. Rosen Classroom, New York

    Google Scholar 

  65. Mellor A (2005) Indoleamine 2,3 dioxygenase and regulation of T cell immunity. Biochem Biophys Res Commun 338:20–24

    Article  CAS  Google Scholar 

  66. Munn DH et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  CAS  Google Scholar 

  67. Van den Bos C (2012) Off the beaten track -regulatory changes. Eur Biopharm Rev

    Google Scholar 

  68. Rowley J, Abraham E, Campbell A, Brandwein H, Oh S (2012) Meeting lot-size challenges of manufacturing adherent cells for therapy. Bioprocess Int 10:16–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian van den Bos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Bos, C., Keefe, R., Schirmaier, C., McCaman, M. (2013). Therapeutic Human Cells: Manufacture for Cell Therapy/Regenerative Medicine. In: Eibl, D., Eibl, R. (eds) Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_233

Download citation

Publish with us

Policies and ethics