Skip to main content

In Vitro Multienzymatic Reaction Systems for Biosynthesis

  • Chapter
  • First Online:
Fundamentals and Application of New Bioproduction Systems

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 137))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APO:

2-aminophenoxazin-3-one

NADH:

Reduced form of nicotinamide adenine dinucleotide

NADPH:

Reduced form of nicotinamide adenine dinucleotide phosphate

Ni–NTA:

Nickel-nitrilotriacetic acid

LbL:

Layer-by-layer

RAMA:

Fructose-1,6-bisphosphate aldolase from rabbit muscle

PDMS:

Polydimethylsiloxane

LTCC:

Low temperature co-fired ceramics

CIM® :

Convective Interaction Media

GA:

Glutaraldehyde

PTFE:

Poly(tetrafluoroethene)

PS:

Polystirene

PB:

Prussian Blue

THN:

1,3,6,8-tetrahydroxynaphthalene

Au-MSNP:

Gold-magnetic silica nanoparticles

GOD:

Glucose oxidase

POD:

Horseradish peroxidase

BSA:

Bovine serum albumin

FateDH:

Formate dehydrogenase

FaldDH:

Formaldehyde dehydrogenase

ADH:

Alcohol dehydrogenase

References

  1. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics. Portland Press, London

    Google Scholar 

  2. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14:261–269

    CAS  Google Scholar 

  3. Lopez-Gallego F, Schmidt-Dannert C (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14:174–183

    CAS  Google Scholar 

  4. Findrik Z, Vasić-Rački Đ (2009) Overview on reactions with multi-enzyme systems. Chem Biochem Eng Q 23:545–553

    CAS  Google Scholar 

  5. Santacoloma PA, Sin G, Gernaey KV, Woodley JM (2010) Multienzyme-catalyzed processes: next-generation biocatalysis. Org Process Res Dev 15:203–212

    Google Scholar 

  6. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-Enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262

    CAS  Google Scholar 

  7. Asanomi Y, Yamaguchi H, Miyazaki M, Maeda H (2011) Enzyme-immobilized microfluidic process reactors. Molecules 16:6041–6059

    CAS  Google Scholar 

  8. Logan TC, Clark DS, Stachowiak TB, Svec F, Fréchet JMJ (2007) Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions. Anal Chem 79:6592–6598

    CAS  Google Scholar 

  9. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(2006):0028

    Google Scholar 

  10. Forster AC, Church GM (2006) Synthetic biology projects in vitro. Genome Res 17:000

    Google Scholar 

  11. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    CAS  Google Scholar 

  12. Chenault HK, Simon ES, Whitesides GM (1988) Cofactor regeneration for enzyme-catalysed synthesis. Biotechnol Genet Eng Rev 6:221–270

    CAS  Google Scholar 

  13. Lauterbach L, Lenz O, Vincent KA (2013) H2-driven cofactor regeneration with NAD(P)+-reducing hydrogenases. FEBS J, n/a-n/a.

    Google Scholar 

  14. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25:369–384

    CAS  Google Scholar 

  15. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Springer, Berlin

    Google Scholar 

  16. Xue R, Woodley JM (2012) Process technology for multi-enzymatic reaction systems. Bioresour Technol 115:183–195

    CAS  Google Scholar 

  17. Zhao H, van der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14:583–589

    CAS  Google Scholar 

  18. Findrik Z, Vasić-Rački Đ (2008) Mathematical modelling of amino acid resolution catalyzed by l-amino acid oxidases from Crotalus adamanteus and Crotalus atrox. Process Biochem 43:1186–1194

    CAS  Google Scholar 

  19. Plumeré N, Henig J, Campbell WH (2012) Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: Application in an amperometric nitrate biosensor. Anal Chem 84:2141–2146

    Google Scholar 

  20. Srere PA, Mattiasson B, Mosbach K (1973) An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria. P Natl Acad Sci 70:2534–2538

    CAS  Google Scholar 

  21. Yun H, Yang Y-H, Cho B-K, Hwang B-Y, Kim B-G (2003) Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-α-methylbenzylamine from racemic α-methylbenzylamine using ω-transaminase/alcohol dehydrogenase/glucose dehydrogenase coupling reaction. Biotechnol Lett 25:809–814

    CAS  Google Scholar 

  22. Soldatkin OO, Peshkova VM, Dzyadevych SV, Soldatkin AP, Jaffrezic-Renault N, El’skaya AV (2008) Novel sucrose three-enzyme conductometric biosensor. Mat Sci Eng C 28:959–964

    CAS  Google Scholar 

  23. Ishii N, Suga Y, Hagiya A, Watanabe H, Mori H, Yoshino M, Tomita M (2007) Dynamic simulation of an in vitro multi-enzyme system. FEBS Lett 581:413–420

    CAS  Google Scholar 

  24. Bae H-S, Lee S-G, Hong S-P, Kwak M-S, Esaki N, Soda K, Sung M-H (1999) Production of aromatic D-amino acids from α-keto acids and ammonia by coupling of four enzyme reactions. J Mol Catal B Enzym 6:241–247

    CAS  Google Scholar 

  25. Findrik Z, Vasić-Rački Đ (2007) Biotransformation of d-methionine into l-methionine in the cascade of four enzymes. Biotechnol Bioeng 98:956–967

    CAS  Google Scholar 

  26. Gijsen HJM, Qiao L, Fitz W, Wong C-H (1996) Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem Rev 96:443–474

    CAS  Google Scholar 

  27. Roessner CA, Scott AI (1996) Achieving natural product synthesis and diversity via catalytic networking ex vivo. Chem Biol 3:325–330

    CAS  Google Scholar 

  28. Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677

    CAS  Google Scholar 

  29. Fessner W-D, Walter C (1992) “Artificial metabolisms” for the asymmetric one-pot synthesis of branched-chain saccharides. Angew Chem Int Edit 31:614–616

    Google Scholar 

  30. Itoh A, Ohashi Y, Soga T, Mori H, Nishioka T, Tomita M (2004) Application of capillary electrophoresis-mass spectrometry to synthetic in vitro glycolysis studies. Electrophoresis 25:1996–2002

    CAS  Google Scholar 

  31. Wendell D, Todd J, Montemagno C (2010) Artificial photosynthesis in Ranaspumin-2 Based Foam. Nano Lett 10:3231–3236

    CAS  Google Scholar 

  32. Zhang YHP (2009) Using extremophile enzymes to generate hydrogen for electricity. Microbe 4:560–565

    Google Scholar 

  33. Woodward J, Orr M, Cordray K, Greenbaum E (2000) Biotechnology: enzymatic production of biohydrogen. Nature 405:1014–1015

    CAS  Google Scholar 

  34. Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 2:e456

    Google Scholar 

  35. Zhang YHP, Huang W-D (2012) Constructing the electricity–carbohydrate–hydrogen cycle for a sustainability revolution. Trends Biotechnol 30:301–306

    CAS  Google Scholar 

  36. Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang YHP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380

    Google Scholar 

  37. Ardao I, Zeng A-P (2013) In silico evaluation of a complex multi-enzymatic system using one-pot and modular approaches: application to the high-yield production of hydrogen from a synthetic metabolic pathway. Chem Eng Sci 87:183–193

    CAS  Google Scholar 

  38. Bouzas TdM, Barros-Velázquez J, González Villa T (2006) Industrial applications of hyperthermophilic enzymes: a review. Protein Pept Lett 13:645–651

    Google Scholar 

  39. Myung S, Wang Y, Zhang YHP (2010) Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium Thermotoga maritima: characterization, metabolite stability, and its implications. Process Biochem 45:1882–1887

    CAS  Google Scholar 

  40. Chen AH, Silver PA (2012) Designing biological compartmentalization. Trends Cell Biol 22:662–670

    CAS  Google Scholar 

  41. Jandt U, You C, Zhang YHP, Zeng AP (2013) Compartmentalization and metabolic channeling for multienzymatic biosynthesis: practical strategies and modeling approaches. Adv Biochem Eng/Biotechnol (accepted)

    Google Scholar 

  42. Monti D, Ferrandi EE, Zanellato I, Hua L, Polentini F, Carrea G, Riva S (2009) One-pot mutienzymatic synthesis of 12-ketoursodeoxycholic acid: Subtle cofactor specificities rule the reaction equilibria of five biocatalysts working in a row. Adv Synth Catal 351:1303–1311

    CAS  Google Scholar 

  43. Babich L (2013) Enzymatic cascade reactions involving phosphorylated intermediates: immobilization and process optimization. Faculty of Science, University of Amsterdam, Amsterdam (The Netherlands)

    Google Scholar 

  44. Zhang X, Stefanick S, Villani FJ (2004) Application of microreactor technology in process development. Org Process Res Dev 8:455–460

    CAS  Google Scholar 

  45. Urban PL, Goodall DM, Bruce NC (2007) Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol Adv 24:42–57

    Google Scholar 

  46. Miyazaki M, Maeda H (2006) Microchannel enzyme reactors and their applications for processing. Trends Biotechnol 24:463–470

    CAS  Google Scholar 

  47. Matosevic S, Szita N, Baganz F (2011) Fundamentals and applications of immobilized microfluidic enzymatic reactors. J Chem Technol Biotechnol 86:325–334

    CAS  Google Scholar 

  48. Ehrfeld W, Hessel V, Löwe H (2000) Microreactors. Wiley-VCH, Weinheim

    Google Scholar 

  49. Rajabi N, Hoffmann M, Bahnemann J, Zeng A-P, Schl, uuml, ter M, ller J, ouml rg (2012) A Chaotic Advection Enhanced Microfluidic Split-and-Recombine Mixer for the Preparation of Chemical and Biological Probes. J Chem Eng Jpn 45:703–707

    CAS  Google Scholar 

  50. Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571

    CAS  Google Scholar 

  51. Hibara A, Nonaka M, Hisamoto H, Uchiyama K, Kikutani Y, Tokeshi M, Kitamori T (2002) Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels. Anal Chem 74:1724–1728

    CAS  Google Scholar 

  52. Yamaguchi Y, Ogino K, Takagi F, Honda T, Yamashita K, Miyazaki M, Nakamura H, Maeda H (2005) Partial chemical modification of a microchannel and stabilization of water-oil phase separation, Proceedings of the 8th International Conference on Microreaction Technology (IMRET 8). American Institute of Chemical Engineers, New York

    Google Scholar 

  53. Zhao B, Moore JS, Beebe DJ (2002) Principles of surface-directed liquid flow in microfluidic channels. Anal Chem 74:4259–4268

    CAS  Google Scholar 

  54. Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18:1883–1892

    CAS  Google Scholar 

  55. Seong GH, Crooks RM (2002) Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J Am Chem Soc 124:13360–13361

    CAS  Google Scholar 

  56. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    CAS  Google Scholar 

  57. Kim J-H, Kin B-G, La M, Yoon J-B, Yoon E (2002) A dispossable passive microfluidic system integrated with micromixer and DNA purification chip for DNA sample preparation. Micro total analysis sytem. Dordrecht, The Netherlands, pp 224–226

    Google Scholar 

  58. Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74:4279–4286

    CAS  Google Scholar 

  59. Lee M-Y, Srinivasan A, Ku B, Dordick JS (2003) Multienzyme catalysis in microfluidic biochips. Biotechnol Bioeng 83:20–28

    CAS  Google Scholar 

  60. Richter T, Shultz-Lockyear LL, Oleschuk RD, Bilitewski U, Harrison DJ (2002) Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices: determination of xanthine. Sens Actuators B: Chem 81:369–376

    CAS  Google Scholar 

  61. Srinivasan A, Bach H, Sherman DH, Dordick JS (2004) Bacterial P450-catalyzed polyketide hydroxylation on a microfluidic platform. Biotechnol Bioeng 88:528–535

    CAS  Google Scholar 

  62. Drager G, Kiss C, Kunz U, Kirschning A (2007) Enzyme-purification and catalytic transformations in a microstructured PASSflow reactor using a new tyrosine-based Ni-NTA linker system attached to a polyvinylpyrrolidinone-based matrix. Org Biomol Chem 5:3657–3664

    Google Scholar 

  63. Sakai-Kato K, Kato M, Ishihara K, Toyo’oka T (2004) An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Lab Chip 4:4–6

    CAS  Google Scholar 

  64. Heule M, Rezwan K, Cavalli L, Gauckler LJ (2003) A miniaturized enzyme reactor based on hierarchically shaped porous ceramic microstruts. Adv Mater 15:1191–1194

    CAS  Google Scholar 

  65. Krenkova J, Lacher NA, Svec F (2009) Highly efficient enzyme reactors containing trypsin and endoproteinase Lysc immobilized on porous polymer monolith coupled to ms suitable for analysis of antibodies. Anal Chem 81:2004–2012

    CAS  Google Scholar 

  66. Delattre C, Vijayalakshmi MA (2009) Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides. J Mol Catal B Enzym 60:97–105

    CAS  Google Scholar 

  67. Yang C, Zhang Z, Shi Z, Xue P, Chang P, Yan R (2010) Development of a novel enzyme reactor and application as a chemiluminescence flow-through biosensor. Anal Bioanal Chem 397:2997–3003

    CAS  Google Scholar 

  68. Baeza M, López C, Alonso Jn, López-Santín J, Álvaro G (2009) Ceramic microsystem incorporating a microreactor with immobilized biocatalyst for enzymatic spectrophotometric assays. Anal Chem 82:1006–1011

    Google Scholar 

  69. Gleason NJ, Carbeck JD (2004) Measurement of enzyme kinetics using microscale steady-state kinetic analysis. Langmuir 20:6374–6381

    CAS  Google Scholar 

  70. Mao H, Yang T, Cremer PS (2001) Design and characterization of immobilized enzymes in microfluidic systems. Anal Chem 74:379–385

    Google Scholar 

  71. Holden MA, Jung S-Y, Cremer PS (2004) Patterning enzymes inside microfluidic channels via photoattachment chemistry. Anal Chem 76:1838–1843

    CAS  Google Scholar 

  72. Ekström S, Önnerfjord P, Nilsson J, Bengtsson M, Laurell T, Marko-Varga G (1999) Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem 72:286–293

    Google Scholar 

  73. Qu H, Wang H, Huang Y, Zhong W, Lu H, Kong J, Yang P, Liu B (2004) Stable microstructured network for protein patterning on a plastic microfluidic channel: strategy and characterization of on-chip enzyme microreactors. Anal Chem 76:6426–6433

    CAS  Google Scholar 

  74. Wu H, Tian Y, Liu B, Lu H, Wang X, Zhai J, Jin H, Yang P, Xu Y, Wang H (2004) Titania and alumina sol − gel-derived microfluidics enzymatic-reactors for peptide mapping: design, characterization, and performance. J Proteome Res 3:1201–1209

    CAS  Google Scholar 

  75. Ji, Zhang Y, Zhou X, Kong J, Tang Y, Liu B (2008) Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors. Anal Chem 80:2457–2463

    CAS  Google Scholar 

  76. Thomsen MS, Polt P, Nidetzky B (2007) Development of a microfluidic immobilised enzyme reactor. Chemical Communi 0:2527–2529

    Google Scholar 

  77. Nakamura H, Li X, Wang H, Uehara M, Miyazaki M, Shimizu H, Maeda H (2004) A simple method of self assembled nano-particles deposition on the micro-capillary inner walls and the reactor application for photo-catalytic and enzyme reactions. Chem Eng J 101:261–268

    CAS  Google Scholar 

  78. Schilke KF, Wilson KL, Cantrell T, Corti G, McIlroy DN, Kelly C (2010) A novel enzymatic microreactor with Aspergillus oryzae β-galactosidase immobilized on silicon dioxide nanosprings. Biotechnol Prog 26:1597–1605

    CAS  Google Scholar 

  79. Koh W-G, Pishko M (2005) Immobilization of multi-enzyme microreactors inside microfluidic devices. Sens Actuators B: Chem 106:335–342

    CAS  Google Scholar 

  80. Gao J, Xu J, Locascio LE, Lee CS (2001) Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 73:2648–2655

    CAS  Google Scholar 

  81. Hisamoto H, Shimizu Y, Uchiyama K, Tokeshi M, Kikutani Y, Hibara A, Kitamori T (2002) Chemicofunctional membrane for integrated chemical processes on a microchip. Anal Chem 75:350–354

    Google Scholar 

  82. Ku B, Cha J, Srinivasan A, Kwon SJ (2006) Chip-based polyketide biosynthesis and functionalization. Biotechnol Prog 22:1102–1107

    CAS  Google Scholar 

  83. Matosevic S, Lye GJ, Baganz F (2011) Immobilised enzyme microreactor for screening of multi-step bioconversions: Characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols. J Biotechnol 155:320–329

    CAS  Google Scholar 

  84. Lee S-H, Lee C-S, Kim B-G, Kim Y-K (2008) An integrated microfluidic chip for the analysis of biochemical reactions by MALDI mass spectrometry. Biomed Microdevices 10:1–9

    CAS  Google Scholar 

  85. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    CAS  Google Scholar 

  86. Bäumler H, Georgieva R (2010) Coupled enzyme reactions in multicompartment microparticles. Biomacromolecules 11:1480–1487

    Google Scholar 

  87. Caruso F, Schüler C (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16:9595–9603

    CAS  Google Scholar 

  88. Cho EJ, Jung S, Kim HJ, Lee YG, Nam KC, Lee H-J, Bae H-J (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48:886–888

    Google Scholar 

  89. Jia F, Zhang Y, Narasimhan B, Mallapragada SK (2012) Block copolymer-quantum dot micelles for multienzyme colocalization. Langmuir 28:17389–17395

    CAS  Google Scholar 

  90. Niu H, Yuan R, Chai Y, Mao L, Liu H, Cao Y (2013) Highly amplified electrochemiluminescence of peroxydisulfate using bienzyme functionalized palladium nanoparticles as labels for ultrasensitive immunoassay. Biosens Bioelectron 39:296–299

    CAS  Google Scholar 

  91. Pescador P, Katakis I, Toca-Herrera JL, Donath E (2008) Efficiency of a bienzyme sequential reaction system immobilized on polyelectrolyte multilayer-coated colloids. Langmuir 24:14108–14114

    CAS  Google Scholar 

  92. Zhuo Y, Yuan P-X, Yuan R, Chai Y-Q, Hong C-L (2009) Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30:2284–2290

    CAS  Google Scholar 

  93. Betancor L, Berne C, Luckarift HR, Spain JC (2006) Coimmobilization of a redox enzyme and a cofactor regeneration system. Chem Commun 0:3640–3642

    Google Scholar 

  94. Delaittre G, Reynhout IC, Cornelissen JJLM, Nolte RJM (2009) Cascade reactions in an all-enzyme nanoreactor. Chem A Eur J 15:12600–12603

    CAS  Google Scholar 

  95. Kreft O, Prevot M, Möhwald H, Sukhorukov GB (2007) Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. Angew Chem Int Ed 46:5605–5608

    CAS  Google Scholar 

  96. Meeuwissen SA, Rioz-Martinez A, de Gonzalo G, Fraaije MW, Gotor V, van Hest JCM (2011) Cofactor regeneration in polymersome nanoreactors: enzymatically catalysed baeyer-villiger reactions. J Mater Chem 21:18923–18926

    CAS  Google Scholar 

  97. Tanner P, Onaca O, Balasubramanian V, Meier W, Palivan CG (2011) Enzymatic cascade reactions inside polymeric nanocontainers: a means to combat oxidative stress. Chem A Eur J 17:4552–4560

    CAS  Google Scholar 

  98. van Dongen SFM, Nallani M, Cornelissen JJLM, Nolte RJM, Van Hest JCM (2009) A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem A Eur J 15:1107–1114

    Google Scholar 

  99. Zhang L, Shi J, Jiang Z, Jiang Y, Qiao S, Li J, Wang R, Meng R, Zhu Y, Zheng Y (2011) Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem 13:300–306

    CAS  Google Scholar 

  100. Schoffelen S, van Hest JCM (2012) Multi-enzyme systems: bringing enzymes together in vitro. Soft Matter 8:1736–1746

    CAS  Google Scholar 

  101. Vriezema DM, Garcia PML, Sancho|Oltra N, Hatzakis NS, Kuiper SM, Nolte RJM, Rowan AE, Van|Hest JCM (2007) Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew Chem Int Ed 46:7378–7382

    CAS  Google Scholar 

  102. Jia F, Narasimhan B, Mallapragada SK (2013) Biomimetic multienzyme complexes based on nanoscale platforms. AIChE J 59:355–360

    CAS  Google Scholar 

  103. Aranaz I, Ramos V, De La Escalera S, Heras A (2003) Co-immobilization of d-hydantoinase and d-carboamylase on Chitin: Application to the Synthesis of p-hydroxyphenylglycine. Biocatal Biotransform 21:349–356

    CAS  Google Scholar 

  104. Lopez-Gallego F, Batencor L, Hidalgo A, Mateo C, Fernandez-Lafuente R, Guisan JM (2005) One-pot conversion of cephalosporin c to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. Adv Synth Catal 347:1804–1810

    CAS  Google Scholar 

  105. Watanabe J, Ishihara K (2005) Sequential enzymatic reactions and stability of biomolecules immobilized onto phospholipid polymer nanoparticles. Biomacromolecules 7:171–175

    Google Scholar 

  106. Keighron JD, Keating CD (2010) Enzyme: nanoparticle bioconjugates with two sequential enzymes: stoichiometry and activity of malate dehydrogenase and citrate synthase on au nanoparticles. Langmuir 26:18992–19000

    CAS  Google Scholar 

  107. Le M, Means GE (1998) NAD +/NADH recycling by coimmobilized lactate dehydrogenase and glutamate dehydrogenase. Enzyme Microbial Technol 23:49–57

    CAS  Google Scholar 

  108. Liu W, Zhang S, Wang P (2009) Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration. J Biotechnol 139:102–107

    CAS  Google Scholar 

  109. Shi J, Zhang L, Jiang Z (2011) Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization. ACS Appl Mater Interfaces 3:881–889

    CAS  Google Scholar 

  110. Cao X, Li Y, Zhang Z, Yu J, Qian J, Liu S (2012) Catalytic activity and stability of glucose oxidase/horseradish peroxidase co-confined in macroporous silica foam. Analyst 137:5785–5791

    CAS  Google Scholar 

  111. Qiu H, Li Y, Ji G, Zhou G, Huang X, Qu Y, Gao P (2009) Immobilization of lignin peroxidase on nanoporous gold: Enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase. Bioresour Technol 100:3837–3842

    CAS  Google Scholar 

  112. El-Zahab B, Jia H, Wang P (2004) Enabling multienzyme biocatalysis using nanoporous materials. Biotechnol Bioeng 87:178–183

    CAS  Google Scholar 

  113. Wang P, Ma G, Gao F, Liao L (2005) Enabling multienzyme bioactive systems using a multiscale approach. China Particuology 3:304–309

    CAS  Google Scholar 

  114. Zhang Y, Gao F, Zhang S-P, Su Z-G, Ma G-H, Wang P (2011) Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Bioresour Technol 102:1837–1843

    CAS  Google Scholar 

  115. Obert R, Dave BC (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol−gel matrices. J Am Chem Soc 121:12192–12193

    CAS  Google Scholar 

  116. Xu S-w, Lu Y, Li J, Jiang Z-Y, Wu H (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate − Silica (ALG − SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573

    CAS  Google Scholar 

  117. El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng 99:508–514

    CAS  Google Scholar 

  118. Sun Q, Jiang Y, Jiang Z, Zhang L, Sun X, Li J (2009) Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated Titania. Ind Eng Chem Res 48:4210–4215

    CAS  Google Scholar 

  119. Jiang Y, Sun Q, Zhang L, Jiang Z (2009) Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system. J Mater Chem 19:9068–9074

    CAS  Google Scholar 

  120. Dibenedetto A, Stufano P, Macyk W, Baran T, Fragale C, Costa M, Aresta M (2012) Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5:373–378

    CAS  Google Scholar 

  121. Shi J, Wang X, Jiang Z, Liang Y, Zhu Y, Zhang C (2012) Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion. Bioresour Technol 118:359–366

    CAS  Google Scholar 

  122. Wu M, He Q, Shao Q, Zuo Y, Wang F, Ni H (2011) Preparation and characterization of monodispersed microfloccules of TiO2 nanoparticles with immobilized multienzymes. ACS Appl Mater Interfaces 3:3300–3307

    CAS  Google Scholar 

  123. Zhang L, Shi J, Jiang Z, Jiang Y, Meng R, Zhu Y, Liang Y, Zheng Y (2011) Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer. ACS Appl Mater Interfaces 3:597–605

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Ping Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ardao, I., Hwang, E.T., Zeng, AP. (2013). In Vitro Multienzymatic Reaction Systems for Biosynthesis. In: Zeng, AP. (eds) Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_232

Download citation

Publish with us

Policies and ethics