Skip to main content

Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

  • Chapter
  • First Online:
Biosystems Engineering II

Abstract

In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore–hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

CFD:

Computational fluid dynamics

CLSM:

Confocal laser scanning microscopy

(dc/dr)max :

Maximum oxygen concentration gradient

dh/dr :

Gradient of the hyphal fraction h within the outer pellet periphery

GFP:

Green fluorescent protein

h :

Hyphal fraction

L c :

Concentration boundary layer

LES:

Large eddy simulation

P/V:

Volumetric power input

PIV:

Particle image velocimetry

pspd:

Position-sensitive photo-detector

r :

Radial coordinate

RANS:

Reynolds averaged Navier–Stokes equations

Re P :

Reynolds number at the pellet

RT-PCR:

Reverse transcription polymerase chain reaction

SST:

Shear stress transport turbulence model

STR:

Stirred tank reactor

TKE:

Turbulent kinetic energy

References

  1. Cui YQ, Okkerse WJ, van der Lans RGJM, Luyben KChAM (1998) Biotechnol Bioeng 60:216

    Article  CAS  Google Scholar 

  2. Hagemann T, Ringel A, Hempel DC, Krull R (2007) Biospektrum 2007. In: Proceedings of VAAM-Jahrestagung, Osnabrück, Germany

    Google Scholar 

  3. Lin PJ, Hagemann T, Stintzing A, Appel C, Hempel DC, Krull R (2008) In: Proceedings of European Bioperspectives 2008, Book of Abstracts, Hanover, Germany, p 50

    Google Scholar 

  4. Grimm LH, Kelly S, Völkerding II, Krull R, Hempel DC (2005) Biotechnol Bioeng 92:879

    Article  CAS  Google Scholar 

  5. Stintzing A, Pilz R, Hempel DC, Krull R (2008) Chem Ing Tech 80:1837

    Article  CAS  Google Scholar 

  6. Metz B, Kossen NWF (1977) Biotechnol Bioeng 14:781

    Article  Google Scholar 

  7. Trinci APJ (1974) J Gen Microbiol 81:225

    CAS  Google Scholar 

  8. Schuhmann E, Bergter F (1976) Z Allg Mikrobiol 16:201

    Article  CAS  Google Scholar 

  9. Caldwell IY, Trinci APJ (1973) Arch Microbiol 88:1

    CAS  Google Scholar 

  10. King R (1995) Chem Ing Tech 67:553

    Article  Google Scholar 

  11. Spohr A, Dam-Mikkelsen C, Carlsen M, Nielsen J, Villadsen J (1998) Biotechnol Bioeng 58:541

    Article  CAS  Google Scholar 

  12. Paul GC, Thomas CR (1998) In: Schügerl K (ed) Relation between morphology and process performances. Adv Biochem Eng Biotechnol, vol 60. Springer, Berlin, p 2

    Google Scholar 

  13. Grimm LH, Kelly S, Krull R, Hempel DC (2005) Appl Microbiol Biotechnol 49:375

    Article  Google Scholar 

  14. Bergter F (1978) Z Allg Mikrobiol 18:143

    Article  CAS  Google Scholar 

  15. Papagianni M (2004) Biotechnol Adv 22:189

    Article  CAS  Google Scholar 

  16. Kelly S, Grimm LH, Bendig C, Hempel DC, Krull R (2006) Process Biochem 41:2113

    Article  CAS  Google Scholar 

  17. Grimm LH, Kelly S, Hengstler J, Göbel A, Krull R, Hempel DC (2004) Biotechnol Bioeng 87:213

    Article  CAS  Google Scholar 

  18. Amanullah A, Leonili E, Nienow AW, Thomas CR (2001) Bioprocess Biosyst Eng 24:101

    Article  CAS  Google Scholar 

  19. Lin PJ, Grimm LH, Wulkow M, Hempel DC, Krull R (2008) Biotechnol Bioeng 99:341

    Article  CAS  Google Scholar 

  20. Grimm LH (2006) In: Hempel DC (ed) ibvt-Schriftenreihe, vol 27. FIT-Verlag, Paderborn

    Google Scholar 

  21. Paul GC, Kent A, Thomas CR (1993) Biotechnol Bioeng 42:11

    Article  CAS  Google Scholar 

  22. Bizukojc M, Ledakowicz S (2006) Process Biochem 41:1063

    Article  CAS  Google Scholar 

  23. Nielsen J, Villadsen J (1994) Bioreaction engineering principles. Plenum, New York, London

    Google Scholar 

  24. Papagianni M (2006) Microb Cell Fact 5:1

    Article  Google Scholar 

  25. Bowen WR, Lovitt RW (2000) Colloids Surf 173:205

    Article  CAS  Google Scholar 

  26. Bowen WR, Lovitt RW (2000) J Colloid Interface Sci 228:428

    Article  CAS  Google Scholar 

  27. Luckham PF (2004) Adv Colloid Interface Sci 111:29

    Article  CAS  Google Scholar 

  28. Müller DJ, Dufrêne YF (2008) Nat Nanotechnol 3:261

    Article  Google Scholar 

  29. Ryoo D, Choi CS (1999) Biotechnol Lett 21:97

    Article  CAS  Google Scholar 

  30. Fujita M, Iwahori K (1994) J Ferment Bioeng 78:368

    Article  CAS  Google Scholar 

  31. Israelachvili JN (1991) Intermolecular and surface forces. Academic, San Diego

    Google Scholar 

  32. Müller FW, Peukert W (2004) Int J Miner Process 74S:31

    Article  Google Scholar 

  33. Götzinger M, Weigl B (2007) Colloids Surf B Biointerfaces 55:44

    Article  Google Scholar 

  34. Butt HJ, Cappella B (2005) Surf Sci Rep 59:1

    Article  CAS  Google Scholar 

  35. Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  36. Rinas U, El-Enshasy H, Emmler M, Hille A, Hempel DC, Horn H (2005) Chem Eng Sci 60:2729

    Article  CAS  Google Scholar 

  37. Hille A (2008) In: Hempel DC (ed) ibvt-Schriftenreihe, vol 32. FIT-Verlag, Paderborn

    Google Scholar 

  38. Emerson S (1950) J Bacteriol 60:221

    CAS  Google Scholar 

  39. Prosser JI (1994) In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London, p 319

    Google Scholar 

  40. Marshall KC, Alexander M (1960) J Bacteriol 80:412

    CAS  Google Scholar 

  41. Pirt SJ (1966) Proc R Soc B 166:369

    Article  CAS  Google Scholar 

  42. Hamanaka T, Higashiyama K, Fujikawa S, Park EY (2001) Appl Microbiol Biotechnol 56:233

    Article  CAS  Google Scholar 

  43. El-Enshasy H, Hellmuth K, Rinas U (1999) Appl Biochem Biotechnol 81:1

    Article  CAS  Google Scholar 

  44. Hellendoorn L, Mulder H, Heuvel JCvd, Ottengraf SPP (1998) Biotechnol Bioeng 58:478

    Article  CAS  Google Scholar 

  45. Bohle K (2009) In: Hempel DC (ed) ibvt-Schriftenreihe, vol 40. FIT-Verlag, Paderborn

    Google Scholar 

  46. Cui YQ, Lans RGJMvd, Luyben KCAM (1998) Biotechnol Bioeng 57:409

    Article  CAS  Google Scholar 

  47. Hille A, Neu TR, Hempel DC, Horn H (2006) Chem Ing Tech 78:627

    Article  CAS  Google Scholar 

  48. Hille A, Neu TR, Hempel DC, Horn H (2009) Biotechnol Bioeng 103:1202

    Article  CAS  Google Scholar 

  49. Hille A, Neu TR, Hempel DC, Horn H (2005) Biotechnol Bioeng 92:614

    Article  CAS  Google Scholar 

  50. Cronenberg CCH, Ottengraf SPP, Heuvel JCvd, Pottel F, Sziele D, Schügerl K, Bellgardt KH (1994) Bioproc Eng 10:209

    Google Scholar 

  51. Wittler R, Baumgartl H, Lübbers DW, Schügerl K (1986) Biotechnol Bioeng 28:1024

    Article  CAS  Google Scholar 

  52. Huang MY, Bungay HR (1973) Biotechnol Bioeng 24:1193

    Article  Google Scholar 

  53. Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC (2004) Bioprocess Biosyst Eng 26:315

    Article  CAS  Google Scholar 

  54. Papagianni M, Mattey M, Kristiansen B (1998) Biochem Eng J 2:197

    Article  CAS  Google Scholar 

  55. Metz B, Bruijn Ewd, Suijdam JCv (1981) Biotechnol Bioeng 23:149

    Article  Google Scholar 

  56. Suidjdam JCv, Metz B (1981) Biotechnol Bioeng 23:111

    Article  Google Scholar 

  57. Ayazi Shamlou P, Makagiansar HY, Ison AP, Lilliy D, Thomas CR (1994) Chem Eng Sci 49:2621

    Article  CAS  Google Scholar 

  58. Fujita M, Iwahori KST, Yanakawa K (1994) J Fermet Bioeng 78:368

    Article  CAS  Google Scholar 

  59. Cui YQ, Lans RGJMvd, Luyben KCAM (1997) Biotechnol Bioeng 55:715

    Article  CAS  Google Scholar 

  60. Johansen CL, Coolen L, Hunik JH (1998) Biotechnol Prog 14:233

    Article  CAS  Google Scholar 

  61. Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR (2002) Biotechnol Bioeng 77:815

    Article  CAS  Google Scholar 

  62. Amanullah A, Jüsten P, Davies A, Paul GC, Nienow AW, Thomas CR (2000) Biochem Eng J 5:109

    Article  Google Scholar 

  63. Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Biotechnol Bioeng 52:672

    Article  Google Scholar 

  64. Alkamo R, Micalea G, Grisafia F, Brucatoa A, Ciofalo M (2005) Chem Eng Sci 60:2303

    Article  Google Scholar 

  65. Revstedt J, Fuchs L (2002) Chem Eng Technol 25:443

    Article  CAS  Google Scholar 

  66. Chien KY (1982) AIAA J 20:33

    Article  CAS  Google Scholar 

  67. Jones W, Launder B (1972) Int J Heat Mass Transf 15:301

    Article  Google Scholar 

  68. Launder B, Sharma B (1974) Lett Heat Mass Transf 1:131

    Article  Google Scholar 

  69. Launder B, Spalding D (1990) Comput Methods Appl Mech Eng 3:269

    Article  Google Scholar 

  70. Wilcox D (1988) AIAA J 26:1414

    Google Scholar 

  71. Menter FR (1994) AIAA J 32:1598

    Article  Google Scholar 

  72. Appel C, Hagemann T, Kähler CJ, Krull R (2007) Proc 10. Köthener Rührer- Kolloquium, Hochschule Anhalt (FH), 39–50, ISBN-13: 978-3-86011-015-7, Köthen

    Google Scholar 

  73. Prasad AK, Adrian RJ (1993) Exp Fluids 15:49

    Article  CAS  Google Scholar 

  74. Prasad AK, Jensen K (1995) Appl Opt 34:7092

    Article  CAS  Google Scholar 

  75. Appel C, Hagemann T, Lin PJ, Stintzing A, Kähler CJ, Krull R (2007) In: Proceedings of the International Conference on Multiphase Flow ICMF 2007, Leipzig

    Google Scholar 

  76. Rodriguez Porcel EM, Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM, Chisti Y (2005) Biochem Eng J 26:139

    Article  CAS  Google Scholar 

  77. Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM, Rodriguez Porcel EM, Chisti Y (2005) J Biotechnol 116:61

    Article  CAS  Google Scholar 

  78. Visser J (2009) Eurofung. Fungal Genet Biol 46:S1

    Google Scholar 

  79. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Nat Biotechnol 25:221

    Article  Google Scholar 

  80. Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J (2008) Proc Natl Acad Sci USA 105:4387

    Article  CAS  Google Scholar 

  81. Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE (2009) Fungal Genet Biol 46:153

    Article  Google Scholar 

  82. Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskell SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ (2009) BMC Genomics 10:61

    Article  Google Scholar 

  83. Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Med Mycol 47:53

    Article  Google Scholar 

  84. Pedersen H, Christensen B, Hjort C, Nielsen J (2000) Metab Eng 1:34

    Article  Google Scholar 

  85. Prathumpai W, Gabelgaard JB, Wanchanthuek P, van de Vondervoort PJ, de Groot MJ, McIntyre M, Nielsen J (2003) Biotechnol Prog 19:1136

    Article  CAS  Google Scholar 

  86. Alvarez-Vasquez F, Gonzalez-Alcon C, Torres NV (2000) Biotechnol Bioeng 70:82

    Article  CAS  Google Scholar 

  87. Torres NV (1994) Biotechnol Bioeng 44:104

    Article  CAS  Google Scholar 

  88. David H, Akesson M, Nielsen J (2003) Eur J Biochem 270:4243

    Article  CAS  Google Scholar 

  89. Melzer G, Dalpiaz A, Kucklick M, Göcke Y, Jonas R, Dersch P, Franco-Lara E, Nörtemann B, Hempel DC (2007) J Biotechnol 132:405

    Article  CAS  Google Scholar 

  90. Melzer G, Eslahpazir M, Franco-Lara E, Nörtemann B, Hempel DC, Wittmann C (2009) BMC Syst Biol 3:120

    Google Scholar 

  91. Andersen MR, Nielsen ML, Nielsen J (2008) Mol Syst Biol 4:178

    Article  Google Scholar 

  92. Andersen MR, Lehmann L, Nielsen J (2009) Genome Biol 10:R47

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support provided by the German Research Foundation (DFG) through the Collaborative Research Center SFB 578 “From Gene to Product” at the Technische Universität Braunschweig, Germany. Special thanks are given to the colleagues involved in the different SFB-projects: Christina Appel, Kathrin Bohle, Markus Emmler, Alex Dalpiaz, Matthias Gehder, Yvonne Göcke, Luis H. Grimm, Timo Hagemann, Andrea Hille, Rochus Jonas, Anke Jungebloud, Christian J. Kähler (Institute of Fluid Mechanics and Aerodynamics, Universität der Bundeswehr München), Sven Kelly, Katina Kiep, Pey-Jin Lin, Xin Lu, Guido Melzer, Becky Sommer, Alexander Stintzing, Andreas Wargenau and Michael Wulkow (CiT GmbH, Rastede, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Krull .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr.-Ing. Dietmar C. Hempel on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Krull, R. et al. (2010). Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger . In: Wittmann, C., Krull, R. (eds) Biosystems Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_60

Download citation

Publish with us

Policies and ethics