Skip to main content

Application of Microbial Bioreporters in Environmental Microbiology and Bioremediation

  • Chapter
  • First Online:
Whole Cell Sensing System II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 118))

Abstract

Bioreporters have been widely acknowledged to represent new and novel approaches in applied microbiology. Despite a plethora of constructions covering a diverse range of detection devices and host organisms, genuine applications are rare. Here, their application in the areas of general environmental microbiology, analytical detection and bioremediation are summarised and critically considered. Future applications require a more integrated approach such that those constructing bioreporters are aware of the needs of the end-user. A decade ago, predictions were made of the pivotal role of bioreporters and our future reliance; this fortune telling may take another decade to reach fruition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Der Meer JR (2006) Analytics with engineered bacterial bioreporter strains and systems. Curr Opin Biotechnol 17:1–3

    CAS  Google Scholar 

  2. Leonard P, Hearty S, Brennan J et al (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13

    CAS  Google Scholar 

  3. Ivnitski D, Abdel-Hamid I, Atanasov P et al (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    CAS  Google Scholar 

  4. Toze S (1999) PCR and the detection of microbial pathogens in water and wastewater. Water Res 33:3545–3556

    CAS  Google Scholar 

  5. Brigati JR, Ripp SA, Johnson CM et al (2007) Bacteriophage-based bioluminescent bioreporter for the detection of Escherichia coli O157:H7. J Food Prot 70:1386–1392

    CAS  Google Scholar 

  6. Ripp S, Jegier P, Birmele M et al (2006) Linking bacteriophage infection to quorum sensing signalling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J Appl Microbiol 100:488–499

    CAS  Google Scholar 

  7. Sabaratnam S, Beattie GA (2003) Differences between Pseudomonas syringae pv. syringae B728a and Pantoea agglomerans BRT98 in epiphytic and endophytic colonization of leaves. Appl Environ Microbiol 69:1220–1228

    CAS  Google Scholar 

  8. Rice AR, Hamilton MA, Camper AK (2003) Movement, replication, and emigration rates of individual bacteria in a biofilm. Microb Ecol 45:163–172

    CAS  Google Scholar 

  9. Goh YY, Ho B, Ding JL (2002) A novel fluorescent protein-based biosensor for gram-negative bacteria. Appl Environ Microbiol 68:6343–6352

    CAS  Google Scholar 

  10. Axtell CA, Beattie GA (2002) Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl Environ Microbiol 68:4604–4612

    CAS  Google Scholar 

  11. Højberg O, Schnider U, Winteler HV et al (1999) Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl Environ Microbiol 65:4085–4093

    Google Scholar 

  12. Casavant NC, Beattie GA, Phillips GJ et al (2002) Site-specific recombination-based genetic system for reporting transient or low-level gene expression. Appl Environ Microbiol 68:3588–3596

    CAS  Google Scholar 

  13. Sarand I, Skärfstad E, Forsman M et al (2001) Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. Appl Environ Microbiol 67:162–171

    CAS  Google Scholar 

  14. Neilson JW, Pierce SA, Maier RM (1999) Factors influencing expression of luxCDABE and nah genes in Pseudomonas putida RB1353(NAH7, pUTK9) in dynamic systems. Appl Environ Microbiol 65:3473–3482

    CAS  Google Scholar 

  15. Ulitzur S, Kuhn J (1987) Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility. In: Sclomerich J, Andreesen R, Kapp A, Ernst M, Woods WG (eds) Bioluminescence and chemiluminescence: new perspectives. Wiley, Bristol, UK, pp 463–472

    Google Scholar 

  16. Loessner MJ, Rees CED, Stewart GSAB et al (1996) Construction of luciferase reporter bacteriophage A511:luxAB for rapid and sensitive detection of viable Listeria cells. Appl Environ Microbiol 62:1133–1140

    CAS  Google Scholar 

  17. Sarkis GJ, Jacobs WR Jr, Hatfull GF (1995) L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067

    CAS  Google Scholar 

  18. Chen J, Griffiths MW (1996) Salmonella detection in eggs using lux + bacteriophages. J Food Prot 59:908–914

    CAS  Google Scholar 

  19. Blasco R, Murphy MJ, Sanders MF et al (1998) Specific assays for bacteria using phage mediated release of adenylate kinase. J Appl Microbiol 84:661–666

    CAS  Google Scholar 

  20. Pagotto F, Brovko L, Griffiths MW (1996) Phage-mediated detection of Staphylococcus aureus and Escherichia coli using bioluminescence. Bacteriol Qual Raw Milk 9601:152–156

    Google Scholar 

  21. Goodridge L, Chen J, Griffiths M (1999) Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl Environ Microbiol 65:1397–1404

    CAS  Google Scholar 

  22. Waddell TE, Poppe C (2000) Construction of mini-Tn10luxABcam/Ptac-ATS and its use for developing a bacteriophage that transduces bioluminescence to Escherichia coli O157:H7. FEMS Microbiol Lett 182:285–289

    CAS  Google Scholar 

  23. Favrin SJ, Jassim SA, Griffiths MW (2001) Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica serovar enteritidis in broth. Appl Environ Microbiol 67:217–224

    CAS  Google Scholar 

  24. Goodridge L, Griffiths M (2002) Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Res Int 35:863–870

    CAS  Google Scholar 

  25. Funatsu T, Taniyama T, Tajima T et al (2002) Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol 46:365–369

    CAS  Google Scholar 

  26. Mosier-Boss PA, Lieberman SH, Andrews JM et al (2003) Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl Spectrosc 57:1138–1144

    CAS  Google Scholar 

  27. Casavant NC, Thompson D, Beattie GA et al (2003) Use of a site-specific recombination-based biosensor for detecting bioavailable toluene and related compounds on roots. Environ Microbiol 5:238–249

    CAS  Google Scholar 

  28. Oda M, Morita M, Unno H et al (2004) Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol 70:527–534

    CAS  Google Scholar 

  29. Van Der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    CAS  Google Scholar 

  30. Birmele M, Ripp S, Jegier P et al (2008) Characterization and validation of a bioluminescent bioreporter for the direct detection of Escherichia coli. J Microbiol Methods 75:354–356

    CAS  Google Scholar 

  31. Ackman D, Marks S, Mack P et al (1997) Swimming-associated haemorrhagic colitis due to Escherichia coli O157:H7 infection: evidence of prolonged contamination of a fresh water lake. Epidemiol Infect 119:1–8

    CAS  Google Scholar 

  32. Morita M, Fischer CR, Mizoguchi K et al (2002) Amino acid alterations in Gp38 of host range mutants of PP01 and evidence for their infection of an ompC null mutant of Escherichia coli O157:H7. FEMS Microbiol Lett 216:243–248

    CAS  Google Scholar 

  33. DeAngelis KM, Ji P, Firestone MK et al (2005) Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl Environ Microbiol 71:8537–8547

    CAS  Google Scholar 

  34. Girotti S, Ferri EN, Fumo MG et al (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608:2–29

    CAS  Google Scholar 

  35. Bierkens J, Klein G, Corbisier P et al (1998) Comparative sensitivity of 20 bioassays for soil quality. Chemosphere 37:2935–2947

    CAS  Google Scholar 

  36. Farreé M, Arranz F, Riboó J et al (2004) Inter-laboratory study of the bioluminescence inhibition tests for rapid wastewater toxicity assessment. Talanta 62:549–558

    Google Scholar 

  37. Trott D, Dawson JJC, Killham KS et al (2007) Comparative evaluation of a bioluminescent bacterial assay in terrestrial ecotoxicity testing. J Environ Monitor 9:44–50

    CAS  Google Scholar 

  38. McKinney JD, Richard A, Waller C et al (2000) The practice of structure activity relationships (SAR) in toxicology. Toxicol Sci 56:8–17

    CAS  Google Scholar 

  39. Bundy JG, Morriss AWJ, Durham DG et al (2001) Development of QSARs to investigate the bacterial toxicity and biotransformation potential of aromatic heterocylic compounds. Chemosphere 42:885–892

    CAS  Google Scholar 

  40. Paton GI, Bundy JG, Campbell CD et al (2004) Application of catabolic based biosensors to develop QSARs for degradation. In: Cronin MTD, Livingstone DJ (eds) Predicting chemical toxicity and fate, 1st edn. CRC, Boca Raton

    Google Scholar 

  41. Dawson JJC, Godsiffe EJ, Thompson IP et al (2007) Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem 39:164–177

    CAS  Google Scholar 

  42. Bundy JG, Campbell CD, Paton GI (2001) Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting oils. J Environ Monitor 3:404–410

    CAS  Google Scholar 

  43. Selifonova OV, Eaton RW (1996) Use of an ipb-lux fusion to study regulation of the isopropylbenzene catabolism operon of Pseudomonas putida RE204 and to detect hydrophobic pollutants in the environment. Appl Environ Microbiol 62:778–783

    CAS  Google Scholar 

  44. Dawson JJC, Iroegbu CO, Maciel H et al (2008) Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104:141–151

    CAS  Google Scholar 

  45. Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971

    CAS  Google Scholar 

  46. Willardson BM, Wilkins JF, Rand TA et al (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64:1006–1012

    CAS  Google Scholar 

  47. Zaki S, Abd-El-Haleem D, Abulhamd A et al (2008) Influence of phenolics on the sensitivity of free and immobilized bioluminescent Acinetobacter bacterium. Microbiol Res 163:277–285

    CAS  Google Scholar 

  48. Leedjärv A, Ivask A, Virta M et al (2006) Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere 64:1910–1919

    Google Scholar 

  49. Tiensing T, Strachan N, Paton GI (2002) Evaluation of interactive toxicity of chlorophenols in water and soil using lux-marked biosensors. J Environ Monitor 4:482–489

    CAS  Google Scholar 

  50. Bhattacharyya J, Read D, Amos S et al (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environ Pollut 134:485–492

    CAS  Google Scholar 

  51. Paton GI, Cheewasedtham W, Marr IL et al (2006) Degradation and toxicity of phenyltin compounds in soil. Environ Pollut 144:746–751

    CAS  Google Scholar 

  52. Abd-El-Haleem D, Zaki S, Abulhamd A et al. (2006) Acinetobacter bioreporter assessing heavy metals toxicity. J Basic Microbiol 46:339–347

    CAS  Google Scholar 

  53. Dawson JJC, Campbell CD, Towers W et al (2006) Linking biosensor responses to Cd, Cu and Zn partitioning in soils. Environ Pollut 142:493–500

    CAS  Google Scholar 

  54. Tandy S, Barbosa V, Tye A et al (2005) Comparison of different microbial bioassays to assess metal-contaminated soils. Environ Toxicol Chem 24:530–536

    CAS  Google Scholar 

  55. Kelly CJ, Tumsaroj N, Lajoie CA (2004) Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system. Water Res 38:423–431

    CAS  Google Scholar 

  56. Shetty RS, Deo SK, Liu Y et al (2004) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88:664–670

    CAS  Google Scholar 

  57. Paton GI, Viventsova E, Kumpene J et al (2006) An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Sci Total Environ 355:106–117

    CAS  Google Scholar 

  58. Flynn HC, Mc Mahon V, Diaz GC et al (2002) Assessment of bioavailable arsenic and copper in soils and sediments from the Antofagasta region of northern Chile. Sci Total Environ 286:51–59

    CAS  Google Scholar 

  59. Baumann B, Van Der Meer JR (2007) Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J Agr Food Chem 55:2115–2120

    CAS  Google Scholar 

  60. Trang PTK, Berg M, Viet PH et al (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:7625–7630

    CAS  Google Scholar 

  61. Flynn HC, Meharg AA, Bowyer PK et al (2003) Antimony bioavailability in mine soils. Environ Pollut 124:93–100

    CAS  Google Scholar 

  62. Golding GR, Sparling R, Kelly CA (2008) Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl Environ Microbiol 74:667–675

    CAS  Google Scholar 

  63. Boyanapalli R, Bullerjahn GS, Pohl C et al (2007) Luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl Environ Microbiol 73:1019–1024

    CAS  Google Scholar 

  64. Porta D, Bullerjahn GS, Twiss MR et al (2005) Determination of bioavailable Fe in lake Erie using a luminescent cyanobacterial bioreporter. J Gt Lakes Res 31:180–194

    CAS  Google Scholar 

  65. Durham KA, Porta D, Twiss MR et al (2002) Construction and initial characterization of a luminescent Synechococcus sp. PCC 7942 Fe-dependent bioreporter. FEMS Microbiol Lett 209:215–221

    CAS  Google Scholar 

  66. Dardenne F, Smolders R, De Coen W et al (2007) Prokaryotic gene profiling assays to detect sediment toxicity: evaluating the ecotoxicological relevance of a cell-based assay. Environ Sci Technol 41:1790–1796

    CAS  Google Scholar 

  67. Sanseverino J, Gupta RK, Layton AC et al (2005) Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Appl Environ Microbiol 71:4455–4460

    CAS  Google Scholar 

  68. Yan L, Allen MS, Simpson ML et al (2007) Direct quantification of N-(3-oxo-hexanoyl)-l-homoserine lactone in culture supernatant using a whole-cell bioreporter. J Microbiol Methods 68:40–45

    CAS  Google Scholar 

  69. Tropel D, Baähler A, Globig K et al (2004) Design of new promoters and of a dual-bioreporter based on cross-activition by the two regulatory proteins XylR and HbpR. Environ Microbiol 6:1186–1196

    CAS  Google Scholar 

  70. Kim J, Jeon CO, Park W (2007) A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid. J Microbiol Biotechnol 17:1727–1732

    CAS  Google Scholar 

  71. Funabashi H, Haruyama T, Mie M et al (2002) Non-destructive monitoring of rpoS promoter activity as stress marker for evaluating cellular physiological status. J Biotechnol 95:85–93

    CAS  Google Scholar 

  72. Hansen LH, Ferrari B, Sørensen AH et al (2001) Detection of oxytetracycline production by Streptomyces rimosus in soil microcosms by combining whole-cell biosensors and flow cytometry. Appl Environ Microbiol 67:239–244

    CAS  Google Scholar 

  73. Jaeger CH, Lindow SE, Miller W et al (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  Google Scholar 

  74. Ramanathan S, Ensor M, Daunert S (1997) Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15:500–506

    CAS  Google Scholar 

  75. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  Google Scholar 

  76. Borremans B, Hobman JL, Provoost A et al (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658

    CAS  Google Scholar 

  77. Tauriainen S, Karp M, Chang W et al (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    CAS  Google Scholar 

  78. Ivask A, François M, Kahru A et al (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55:147–156

    CAS  Google Scholar 

  79. Olaniran AO, Motebejane RM, Pillay B (2008) Bacterial biosensors for rapid and effective monitoring of biodegradation of organic pollutants in wastewater effluents. J Environ Monitor 10:889–893

    CAS  Google Scholar 

  80. Eltzov E, Ben-Yosef DZ, Kushmaro A et al (2008) Detection of sub-inhibitory antibiotic concentrations via luminescent sensing bacteria and prediction of their mode of action. Sens Actuators B 129:685–692

    Google Scholar 

  81. Biran I, Babai R, Levcov K et al (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2:285–290

    CAS  Google Scholar 

  82. Corbisier P, Ji G, Nuyts G et al. (1993) LuxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238

    CAS  Google Scholar 

  83. Tauriainen S, Karp M, Chang W et al (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461

    CAS  Google Scholar 

  84. Ramanathan S, Shi W, Rosen BP et al (1998) Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 369:189–195

    CAS  Google Scholar 

  85. Roberto FF, Barnes JM, Bruhn DF (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58:181–188

    CAS  Google Scholar 

  86. Tom-Petersen A, Hosbond H, Nybroe O (2001) Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38:59–67

    CAS  Google Scholar 

  87. Stoyanov JV, Magnani D, Solioz M (2003) Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546:391–394

    CAS  Google Scholar 

  88. Patterson CJ, Semple KT, Paton GI (2004) Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. FEMS Microbiol Lett 241:215–220

    CAS  Google Scholar 

  89. Purohit HJ, (2003) Biosensors as molecular tools for use in bioremediation. J Clean Prod 11:293–301

    Google Scholar 

  90. King JMH, Di Grazia PM, Applegate B et al (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781

    Google Scholar 

  91. Harms H, Wells MC, Van Der Meer JR (2006) Whole-cell living biosensors – are they ready for environmental application?Appl Microbiol Biotechnol 70:273–280

    CAS  Google Scholar 

  92. Bailey M, Corbisier P, Glover LA et al. (1998) Reporter genes for monitoring microbial cell activity and/or the environment. An opinion. EU Biotechnol Programme DGXII

    Google Scholar 

  93. Sousa S, Duffy C, Weitz H et al (1998) Use of a lux-modified bacterial biosensor to identify constraints to bioremediation of BTEX-contaminated sites. Environ Toxicol Chem 17:1039–1045

    CAS  Google Scholar 

  94. Van der Lelie D, Corbisier P, Baeyens W et al (1994) The use of biosensors for environmental monitoring. Res Microbiol 145:67–74

    CAS  Google Scholar 

  95. Bundy JG, Paton GI, Campbell CD (2004) Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil. Soil Biol Biochem 36:1149–1159

    CAS  Google Scholar 

  96. Applegate BM, Kehrmeyer SR, Sayler GS et al (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735

    CAS  Google Scholar 

  97. Shingleton JT, Applegate BM, Nagel AC et al (1998) Induction of the tod operon by trichloroethylene in Pseudomonas putida TVA8. Appl Environ Microbiol 64:5049–5052

    CAS  Google Scholar 

  98. Ripp S, Nivens DE, Ahn Y et al (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    CAS  Google Scholar 

  99. Nivens DE, McKnight TE, Moser SA et al (2004) Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J Appl Microbiol 96:33–46

    CAS  Google Scholar 

  100. Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494

    CAS  Google Scholar 

  101. Vijayaraghavan R, Islam SK, Zhang M et al (2007) A bioreporter bioluminescent integrated circuit for very low-level chemical sensing in both gas and liquid environments. Sens Actuators B 123:922–928

    Google Scholar 

  102. Werlen C, Jaspers MCM, Van Der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51

    CAS  Google Scholar 

  103. Tecon R, Wells M, Van Der Meer JR (2006) A new green fluorescent protein-based bacterial biosensor for analysing phenanthrene fluxes. Environ Microbiol 8:697–708

    CAS  Google Scholar 

  104. Kohlmeier S, Mancuso M, Tecon R et al (2007) Bioreporters: gfp versus lux revisited and single-cell response. Biosens Bioelectron 22:1578–1585

    CAS  Google Scholar 

  105. Tecon R, Van Der Meer JR (2006) Information from single-cell bacterial biosensors: what is it good for?Curr Opin Biotechnol 17:4–10

    CAS  Google Scholar 

  106. Ji and Silver (1992) Regulation and expression of the Arsenic Resistance Operon from Staphylococcus aureus Plasmid Pi258. 1992. Journal of Bacteriology, 174, 3684–3694

    Google Scholar 

  107. DeAngelis KM, Firestone MK and Lindow SE (2007) Sensitive whole-cell biosensor suitable for detecting a variety of N-Acyl homoserine lactones in intact rhizosphere microbial communities. Applied and Environmental Microbiology, 73, 3724–3727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Diplock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Diplock, E., Alhadrami, H., Paton, G. (2009). Application of Microbial Bioreporters in Environmental Microbiology and Bioremediation. In: Belkin, S., Gu, M. (eds) Whole Cell Sensing System II. Advances in Biochemical Engineering / Biotechnology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_3

Download citation

Publish with us

Policies and ethics