Skip to main content

Totipotency, Pluripotency and Nuclear Reprogramming

  • Chapter
  • First Online:
Engineering of Stem Cells

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 114))

Abstract

Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient’s own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholas J, Hall B (1942) Experiments on developing rats: II. The development of isolated blastomeres and fused eggs. J Exp Zool 90:441–459

    Article  Google Scholar 

  2. Johnson WH et al (1995) Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec 137(1):15–16

    Article  CAS  Google Scholar 

  3. Willadsen SM, Polge C (1981) Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet Rec 108(10):211–213

    Article  CAS  Google Scholar 

  4. Tarkowski AK (1959) Experiments on the development of isolated blastomers of mouse eggs. Nature 184:1286–1287

    Article  CAS  Google Scholar 

  5. Mitalipov SM et al (2002) Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biol Reprod 66(5):1449–1455

    Article  CAS  Google Scholar 

  6. Minami N, Suzuki T, Tsukamoto S (2007) Zygotic gene activation and maternal factors in mammals. J Reprod Dev 53(4):707–715

    Article  CAS  Google Scholar 

  7. Mitalipov SM et al (2002) Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol Reprod 66(5):1367–1373

    Article  CAS  Google Scholar 

  8. Ozil JP (1983) Production of identical twins by bisection of blastocysts in the cow. J Reprod Fertil 69(2):463–468

    Article  CAS  Google Scholar 

  9. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  Google Scholar 

  10. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by terato-carcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  Google Scholar 

  11. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  12. Ginis I, Rao MS (2003) Toward cell replacement therapy: promises and caveats. Exp Neurol 184(1):61–77

    Article  CAS  Google Scholar 

  13. Dawson L et al (2003) Safety issues in cell-based intervention trials. Fertil Steril 80(5):1077–1085

    Article  Google Scholar 

  14. Taylor CJ et al (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025

    Article  Google Scholar 

  15. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441(7097):1061–1067

    Article  CAS  Google Scholar 

  16. Gan Q et al (2007) Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25(1):2–9

    Article  CAS  Google Scholar 

  17. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  Google Scholar 

  18. Campbell KH et al (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66

    Article  CAS  Google Scholar 

  19. Wilmut I et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature (London) 385(6619):810–813

    Article  CAS  Google Scholar 

  20. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morph 10:622–640

    CAS  Google Scholar 

  21. Pomerantz J, Blau HM (2004) Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biol 6(9):810–816

    Article  CAS  Google Scholar 

  22. Wakayama T et al (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374

    Article  CAS  Google Scholar 

  23. Kato Y et al (1998) Eight calves cloned from somatic cells of a single adult. Science 282(5396):2095–2098

    Article  CAS  Google Scholar 

  24. Cibelli JB et al (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280(5367):1256–1258

    Article  CAS  Google Scholar 

  25. Polejaeva IA et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature (London) 407(6800):86–90

    Article  CAS  Google Scholar 

  26. Baguisi A et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17(5):456–461

    Article  CAS  Google Scholar 

  27. Chesne P et al (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20(4):366–369

    Article  CAS  Google Scholar 

  28. Shin T et al (2002) A cat cloned by nuclear transplantation. Nature 415(6874):859

    Article  CAS  Google Scholar 

  29. Woods GL et al (2003) A mule cloned from fetal cells by nuclear transfer. Science 301(5636):1063

    Article  CAS  Google Scholar 

  30. Galli C et al (2003) Pregnancy: a cloned horse born to its dam twin. Nature 424(6949):635

    Article  CAS  Google Scholar 

  31. Zhou Q et al (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302(5648):1179

    Article  CAS  Google Scholar 

  32. Lee BC et al (2005) Dogs cloned from adult somatic cells. Nature 436(7051):641

    Article  CAS  Google Scholar 

  33. Capecchi MR. (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292

    Article  CAS  Google Scholar 

  34. Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell 131(6):1027–1031

    Article  CAS  Google Scholar 

  35. Thomson JA et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92(17):7844–7848

    Article  CAS  Google Scholar 

  36. Thomson JA et al (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55(2):254–259

    Article  CAS  Google Scholar 

  37. Suemori H et al (2001) Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 222(2):273–279

    Article  CAS  Google Scholar 

  38. Mitalipov S et al (2006) Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells 24(10):2177–2186

    Article  CAS  Google Scholar 

  39. Handyside AH et al (1987) Towards the isolation of embryonal stem cells from the sheep. Rouxs Arch Dev Biol 196:185–190

    Article  Google Scholar 

  40. Evans MJ et al (1990) Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 33:125–128

    Article  Google Scholar 

  41. Notarianni E et al (1990) Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J Reprod Fertil 41(Suppl):51–56

    CAS  Google Scholar 

  42. Giles JR et al (1993) Pluripotency of cultured rabbit inner cell mass cells detected by isozyme analysis and eye pigmentation of fetuses following injection into blastocysts or morulae. Mol Reprod Dev 36(2):130–138

    Article  CAS  Google Scholar 

  43. Iannaccone PM et al (1994) Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol 163(1):288–292

    Article  CAS  Google Scholar 

  44. Gurdon JB, Colman A (1999) The future of cloning. Nature 402(6763):743–746

    Article  CAS  Google Scholar 

  45. Lanza RP, Cibelli JB, West MD (1999) Human therapeutic cloning. Nat Med 5(9):975–977

    Article  CAS  Google Scholar 

  46. Munsie MJ et al (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10(16):989–992

    Article  CAS  Google Scholar 

  47. Brambrink T et al (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 103:933–938

    Article  CAS  Google Scholar 

  48. Wakayama S et al (2006) Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24(9):2023–2033

    Article  CAS  Google Scholar 

  49. Stojkovic M et al (2005) Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 11(2):226–231

    Article  Google Scholar 

  50. Mitalipov SM et al (2002) Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol Reprod 66(5):1367–1373

    Article  CAS  Google Scholar 

  51. Kennedy D (2006) Editorial retraction. Science 311:336

    Article  Google Scholar 

  52. Mitalipov SM et al (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod 22(8):2232–2242

    Article  CAS  Google Scholar 

  53. Byrne JA et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502

    Article  CAS  Google Scholar 

  54. Condic ML (2008) Alternative sources of pluripotent stem cells: altered nuclear transfer. Cell Prolif 41(Suppl 1):7–19

    Google Scholar 

  55. Hurlbut WB (2005) Altered nuclear transfer: a way forward for embryonic stem cell research. Stem Cell Rev 1(4):293–300

    Article  Google Scholar 

  56. Niwa H et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929

    Article  CAS  Google Scholar 

  57. Mitalipov SM et al (2003) Oct-4 expression in pluripotent cells of the rhesus monkey. Biol Reprod 69(6):1785–1792

    Article  CAS  Google Scholar 

  58. Torres-Padilla ME et al (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445(7124):214–218

    Article  CAS  Google Scholar 

  59. Chawengsaksophak K et al (2004) Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci USA 101(20):7641–7645

    Article  CAS  Google Scholar 

  60. Strumpf D et al (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132(9):2093–2102

    Article  CAS  Google Scholar 

  61. Nishioka N et al (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283

    Article  CAS  Google Scholar 

  62. Yagi R et al (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134(21):3827–3836

    Article  CAS  Google Scholar 

  63. Meissner A, Jaenisch R (2006) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439(7073):212–215

    Article  CAS  Google Scholar 

  64. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  65. Hanna J et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923

    Article  CAS  Google Scholar 

  66. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  67. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  68. Park IH et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  CAS  Google Scholar 

  69. Brambrink T et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159

    Article  CAS  Google Scholar 

  70. Boiani M et al (2002) Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev 16(10):1209–1219

    Article  CAS  Google Scholar 

  71. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  Google Scholar 

  72. Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitalipov, S., Wolf, D. (2009). Totipotency, Pluripotency and Nuclear Reprogramming. In: Martin, U. (eds) Engineering of Stem Cells. Advances in Biochemical Engineering / Biotechnology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_45

Download citation

Publish with us

Policies and ethics