Skip to main content

Prospects for Biopolymer Production in Plants

  • Chapter
  • First Online:
Green Gene Technology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 107))

Abstract

It is likely that during this century polymers based on renewable materials will gradually replace industrial polymers based on petrochemicals. This chapter gives an overview of the current status of research on plant biopolymers that are used as a material in non-food applications. We cover technical and scientific bottlenecks in the production of novel or improved materials, and the potential of using transgenic or alternative crops in overcoming these bottlenecks. Four classes of biopolymers will be discussed: starch, proteins, natural rubber, and poly-β-hydroxyalkanoates. Renewable polymers produced by chemical polymerization of monomers derived from sugars, vegetable oil, or proteins, are not considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaskell G, Allansdottir A, Allum N, Corchero C, Fischler C, Hampel J, Jackson J, Kronberger N, Mejlgaard N, Revuelta G, Schreiner C, Stares S, Torgersen H, Wagner W (2006) Europeans and biotechnology in 2005: patterns and trends, Eurobarometer 64.3. European Commission's Directorate-General for Research, Brussels, Belgium

    Google Scholar 

  2. Mecking S (2004) Angew Chem 43:1078

    Article  CAS  Google Scholar 

  3. Thakor N, Luetke-Eversloh T, Steinbuechel A (2005) Appl Environ Microbiol 71:835

    Article  PubMed  CAS  Google Scholar 

  4. Kurdikar D, Fournet L, Slater SC, Paster M, Gruys KJ, Gerngross TU, Coulon R (2001) J Ind Ecol 4:107

    Article  Google Scholar 

  5. Dornburg V, Lewandowski I, Patel M (2004) J Ind Ecol 7:93

    Article  Google Scholar 

  6. Luinstra G, Almendinger M, Rieger B (2005) US Patent 7019107

    Google Scholar 

  7. The National Non-Food Crops Centre UK (2005) The promotion of non-food crops. Report number IP/B/AGRI/ST/2005-02. Directorate General Internal Policies of the European Union, Brussels, Belgium

    Google Scholar 

  8. Crank M, Patel M, Marscheider-Weidemann F, Schleich J, Hüsing B, Angerer G (2004) PRO-BIP. Techno-economic feasibility of large-scale production of bio-based polymers in Europe. European Commission's Institute for Prospective Technological Studies, Utrecht, Karlsruhe

    Google Scholar 

  9. Van Camp W (2005) Curr Opin Biotechnol 16:147

    Article  PubMed  CAS  Google Scholar 

  10. Blennow A (2003) Recent Dev Carbohydrate Res 1:95

    CAS  Google Scholar 

  11. Blennow A, Wischmann B, Houborg K, Ahmt T, Jorgensen K, Engelsen SB, Bandsholm O, Poulsen P (2005) Int J Biol Macromol 36:159

    Article  PubMed  CAS  Google Scholar 

  12. Jobling S (2004) Curr Opin Plant Biol 7:210

    Article  PubMed  CAS  Google Scholar 

  13. Morell MK, Myers AM (2005) Curr Opin Plant Biol 8:204

    Article  PubMed  CAS  Google Scholar 

  14. Van Soest JJG, Essers P (1997) J Macromol Sci, Pure Appl Chem A34:1665

    Google Scholar 

  15. Kaplan DL (ed) (1998) Biopolymers from renewable sources. Macromolecular systems – materials approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Bastioli C (2005) Handbook of biodegradable polymers. Rapra Technology, Shawbury

    Google Scholar 

  17. Pauly M, Scheller HV (2000) Planta 210:659

    Article  PubMed  CAS  Google Scholar 

  18. Balsiger J, Bahdon J, Whiteman A (2000) The utilization, processing and demand for rubberwood as a source of wood supply. FAO, Forestry Policy and Planning Division, Rome, Italy

    Google Scholar 

  19. Davis W (1997) The rubber industry's biological nightmare. Fortune Magazine, 4 August 1997

    Google Scholar 

  20. Le Guen V, Lespinasse D, Oliver G, Rodier-Goud M, Pinard F, Seguin M (2003) Theor Appl Genet 108:160

    Article  PubMed  CAS  Google Scholar 

  21. Lespinasse D, Grivet L, Troispoux V, Rodier-Goud M, Pinard F, Seguin M (2000) Theor Appl Genet 100:975

    Article  CAS  Google Scholar 

  22. Blanc G, Baptiste C, Oliver G, Martin F, Montoro P (2006) Plant Cell Rep 24:724

    Article  PubMed  CAS  Google Scholar 

  23. Ray DT, Coffelt TA, Dierig DA (2005) Ind Crops Prod 22:15

    Article  Google Scholar 

  24. Cornish K (1996) US Patent 5580942

    Google Scholar 

  25. Nakayama FS (2005) Ind Crops Prod 22:3

    Article  Google Scholar 

  26. Polhamus LG (1962) Rubber: botany, production, and utilization. Leonard Hill, London

    Google Scholar 

  27. Whaley WG, Bowen JS (1947) Russian dandelion (Kok-Saghyz). An emergency source of natural rubber. United States Department of Agriculture, Washington DC

    Google Scholar 

  28. Cornish K, McMahan CM, Pearson CH, Ray DT, Shintani DK (2005) Rubber World 233:40

    CAS  Google Scholar 

  29. Falque M, Keurentjes J, Bakx-Schotman JMT, van Dijk PJ (1998) Theor Appl Genet 97:283

    Article  CAS  Google Scholar 

  30. Mooibroek H, Cornish K (2000) Appl Microbiol Biotechnol 53:355

    Article  PubMed  CAS  Google Scholar 

  31. Lawton JW (2002) Cereal Chem 79:1

    Article  CAS  Google Scholar 

  32. Mohanty AK, Liu W, Tummala P, Drzal LT, Misra M, Narayan R (2005) Soy protein-based plastics, blends, and composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC, Boca Raton, FL, p 699

    Google Scholar 

  33. Pallos FM, Robertson GH, Pavlath AE, Orts WJ (2006) J Agric Food Chem 54:349

    Article  PubMed  CAS  Google Scholar 

  34. Wondu Holdings (2004) Bioplastics supply chains – implications and opportunities for agriculture. RIRDC publication no: 04/044. Australian Government, Rural Industries Research and Development Corporation, Kingston, ACT, Australia

    Google Scholar 

  35. Sanford K, Kumar M (2005) Curr Opin Biotechnol 16:416

    Article  PubMed  CAS  Google Scholar 

  36. Scheibel T (2005) Curr Opin Biotechnol 16:427

    Article  PubMed  CAS  Google Scholar 

  37. Scheller J, Conrad U (2005) Curr Opin Plant Biol 8:188

    Article  PubMed  CAS  Google Scholar 

  38. Yang J, Barr LA, Fahnestock SR, Liu Z-B (2005) Transgenic Res 14:313

    Article  PubMed  CAS  Google Scholar 

  39. Shih IL, Shen MH, Van YT (2006) Biores Technol 97:1148

    Article  CAS  Google Scholar 

  40. Shih IL, Van YT (2001) Biores Technol 79:207

    Article  CAS  Google Scholar 

  41. Neumann K, Stephan DP, Ziegler K, Huhns M, Broer I, Lockau W, Pistorius EK (2005) Plant Biotechnol J 3:249

    Article  PubMed  CAS  Google Scholar 

  42. Elbahloul Y, Frey K, Sanders J, Steinbuchel A (2005) Appl Environ Microbiol 71:7759

    Article  PubMed  CAS  Google Scholar 

  43. Lenz RW, Marchessault RH (2005) Biomacromolecules 6:1

    Article  PubMed  CAS  Google Scholar 

  44. Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Biomacromolecules 6:580

    Article  PubMed  CAS  Google Scholar 

  45. Van der Walle GAM, De Koning GJM, Weusthuis RA, Eggink G (2001) Adv Biochem Engin Biotechnol 71:263

    Google Scholar 

  46. Witholt B, Kessler B (1999) Curr Opin Biotechnol 10:279

    Article  PubMed  CAS  Google Scholar 

  47. Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM (2006) Science 311:506

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Kim S, Dale BE (2005) Int J LCA 10:200

    Article  CAS  Google Scholar 

  49. Moire L, Rezzonico E, Poirier Y (2003) J Plant Physiol 160:831

    Article  PubMed  CAS  Google Scholar 

  50. Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Planta 211:841

    Article  PubMed  CAS  Google Scholar 

  51. Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE, Gruys KJ (1999) Planta 209:547

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Poirier .

Editor information

Armin Fiechter Christof Sautter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Beilen, J.B., Poirier, Y. (2007). Prospects for Biopolymer Production in Plants. In: Fiechter, A., Sautter, C. (eds) Green Gene Technology. Advances in Biochemical Engineering/Biotechnology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2007_056

Download citation

Publish with us

Policies and ethics