Skip to main content

Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem

  • Conference paper
Artificial Evolution (AE 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1829))

Included in the following conference series:

Abstract

The performance of decoder-based evolutionary algorithms (EAs) strongly depends on the locality of the used decoder and operators. While many approaches to characterize locality are based on the fitness landscape, we emphasize the explicit relation between genotypes and phenotypes. Statistical measures are demonstrated to reliably predict locality properties of selected decoder-based EAs for the multidimensional knapsack problem. Empirical results indicate that (i) strong locality is a necessary condition for high performance, (ii) the concept of heuristic bias also strongly affects solution quality, and (iii) it is important to maintain population diversity, e.g. by phenotypic duplicate elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, L.: Fitness Distance Correlation Analysis: An Instructive Counterexample. In: Proc. of the 7th Int. Conf. on Genetic Algorithms, East Lansing, MI, pp. 57–64 (1997)

    Google Scholar 

  2. Chu, P.C., Beasley, J.E.: A Genetic Algorithm for the Multidimensional Knapsack Problem. Journal of Heuristics 4, 63–86 (1998)

    Article  MATH  Google Scholar 

  3. Fogel, D.B., Ghozeil, A.: Using Fitness Distributions to Design More Efficient Evolutionary Algorithms. In: Proc. of the 3rd IEEE Int. Conf. on Evolutionary Computation, Nagoya, Japan, pp. 11–19 (1996)

    Google Scholar 

  4. Garey, M.D., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Gottlieb, J.: Evolutionary Algorithms for Multidimensional Knapsack Problems: The Relevance of the Boundary of the Feasible Region. In: Proc. of the Genetic and Evolutionary Computation Conf., Orlando, FL, p. 787 (1999)

    Google Scholar 

  7. Gottlieb, J.: On the Effectivity of Evolutionary Algorithms for Multidimensional Knapsack Problems. In: Proc. of Artificial Evolution, Dunkerque, France (1999)

    Google Scholar 

  8. Grefenstette, J.J., Gopal, R., Rosmaita, B., Van Gucht, D.: Genetic Algorithms for the Traveling Salesman Problem. In: Proc. of the 1st Int. Conf. on Genetic Algorithms, Hillsdale, NJ, pp. 160–168 (1985)

    Google Scholar 

  9. Hinterding, R.: Mapping, Order-independent Genes and the Knapsack Problem. In: Proc. of the 1st IEEE Int. Conference on Evolutionary Computation, Orlando, FL, pp. 13–17 (1994)

    Google Scholar 

  10. Igel, C.: Causality of Hierarchical Variable Length Representations. In: Proc. of the 5th IEEE Int. Conf. on Evolutionary Computation, Anchorage, AL, pp. 324–329 (1998)

    Google Scholar 

  11. Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In: Proc. of the 6th Int. Conf. on Genetic Algorithms, Pittsburgh, PA, pp. 184–192 (1995)

    Google Scholar 

  12. Kallel, L., Schoenauer, M.: A Priori Comparison of Binary Crossover Operators: No Universal Statistical Measure, but a Set of Hints. In: Proc. of 3rd European Conf. on Artificial Evolution, Nîmes, France, pp. 287–299 (1997)

    Google Scholar 

  13. Magazine, M.J., Oguz, O.: A Heuristic Algorithm for the Multidimensional Zero One Knapsack Problem. European Journal of Op. Res. 16, 319–326 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Manderick, B., de Weger, M., Spiessens, P.: The Genetic Algorithm and the Structure of the Fitness Landscape. In: Proc. of the 4th Int. Conf. on Genetic Algorithms, pp. 143–150 (1991)

    Google Scholar 

  15. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. J. Wiley & Sons, Chichester (1990)

    MATH  Google Scholar 

  16. Pirkul, H.: A Heuristic Solution Procedure for the Multiconstrained Zero-One Knap- sack Problem. Naval Research Logistics 34, 161–172 (1987)

    Article  MATH  Google Scholar 

  17. Raidl, G.R.: An Improved Genetic Algorithm for the Multiconstrained 0-1 Knap- sack Problem. In: Proc. of the IEEE Int. Conf. on Evolutionary Computation, Anchorage, AL, pp. 207–211 (1998)

    Google Scholar 

  18. Raidl, G.R.: Weight-Codings in a Genetic Algorithm for the Multiconstraint Knap- sack Problem. In: Proc. of the Congress on Evolutionary Computation, Washington DC, pp. 596–603 (1999)

    Google Scholar 

  19. Raidl, G.R., Gottlieb, J.: On the Importance of Phenotypic Duplicate Elimination in Decoder-Based Evolutionary Algorithms. In: Proc. of the Genetic and Evolutionary Computation Conf. in Late-Breaking Papers, Orlando, FL, pp. 204–211 (1999)

    Google Scholar 

  20. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzi- pien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  21. Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)

    Google Scholar 

  22. Ronald, S.: Robust Encodings in Genetic Algorithms. In: Dasgupta, D., Michalewicz, Z. (eds.) Evolutionary Algorithms in Engineering Applications, pp. 29–44. Springer, Heidelberg (1997)

    Google Scholar 

  23. Sendhoff, B., Kreutz, M., von Seelen, W.: A condition for the genotype-phenotype mapping: Causality. In: Proc. of the 7th Int. Conf. on Genetic Algorithms, East Lansing, MI, pp. 73–80 (1997)

    Google Scholar 

  24. Thiel, J., Voss, S.: Some Experiences on Solving Multiconstraint Zero-One Knapsack Problems with Genetic Algorithms. INFOR. 32, 226–242 (1994)

    MATH  Google Scholar 

  25. Valenzuela, C., Hurley, S., Smith, D.: A Permutation Based Genetic Algorithm for Minimum Span Frequency Assignment. In: Proc. of the 5th Int. Conf. on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, pp. 907–916 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlieb, J., Raidl, G.R. (2000). Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem. In: Fonlupt, C., Hao, JK., Lutton, E., Schoenauer, M., Ronald, E. (eds) Artificial Evolution. AE 1999. Lecture Notes in Computer Science, vol 1829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721187_3

Download citation

  • DOI: https://doi.org/10.1007/10721187_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67846-5

  • Online ISBN: 978-3-540-44908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics