Skip to main content

Towards Ultra-Low Power Bio-Inspired Processing

  • Chapter
Body Sensor Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead CA. Analog VLSI and neural systems. Reading, Massachusetts: Addison-Wesley, 1989.

    MATH  Google Scholar 

  2. Gregorian R, Temes GC. Analog MOS integrated circuits for signal processing. John Wiley and Sons, 1986.

    Google Scholar 

  3. Toumazou C, Hugues JBC, Battersby NC. Switched currents: an analogue technique for digital technology. IEE Publishing, 1993.

    Google Scholar 

  4. Hosticka BJ. Performance comparison of analog and digital circuits. Proceedings of the IEEE 1985; 73(1):25–29.

    Article  Google Scholar 

  5. Vittoz EA. Future of analog in the VLSI environment. In: Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, Louisiana, 1990; 2:1372–1375.

    Article  Google Scholar 

  6. Furth PM, Andreou AG. Bit-energy comparison of discrete and continuous signal representations at the circuit level. In: Proceedings of the Fourth Workshop on Physics and Computation 1996.

    Google Scholar 

  7. Sarpeshkar R. Efficient precise computation with noisy components: extrapolation from an electronic cochlea to the brain. California Institute of Technology, PhD Thesis, 1997.

    Google Scholar 

  8. Gilbert B. A precise four-quadrant multiplier with subnanosecond response. IEEE Journal of Solid-State Circuits 1968; 3(4):365–373.

    Article  Google Scholar 

  9. Toumazou C, Lidgey FJ, Haigh DG. Analogue IC design: the current-mode approach. London: Peter Peregrinus Ltd., 1990.

    Google Scholar 

  10. Allen PE, Sinencio ES, Sanchez-Sinencio E. Switched capacitor circuits. Kluwer Academic Publishers, 1990.

    Google Scholar 

  11. Kinniment DJ, Garside JD, Gao B. A comparison of power consumption in some CMOS adder circuits. In: Proceedings of the International Workshop on Power and Timing Modeling Optimization and Simulation, Oldenburg, Germany, 1995; 119–132.

    Google Scholar 

  12. Ramirez-Angulo J, Thoutam S, Lopez-Martin A, Carvajal RJ. Low-voltage CMOS analog four quadrant multiplier based on flipped voltage followers. In: Proceedings of the IEEE International Symposium on Circuits and Systems 2004; 1:681–684.

    Google Scholar 

  13. Satyanarayana JH, Parhi KK. A theoretical approach to estimation of bounds on power consumption in digital multipliers. IEEE Transactions on Circuits and Systems II 1997; 44(6):473–481.

    Article  Google Scholar 

  14. Weste NHE, Eshraghian K. Principles of CMOS VLSI design: a systems perspective. Addison-Wesley, 1993.

    Google Scholar 

  15. Gilbert B. Current-mode circuits from a translinear viewpoint: a tutorial. In: Toumazou C, Lidgey FJ, Haigh DG (eds) Analogue IC Design: the Current-Mode Approach. London: Peter Peregrinus Ltd., 1990; 11–91.

    Google Scholar 

  16. Quoc-Hoang D, Trung-Kien N, Sang-Gug L. Ultra low-voltage low-power exponential voltage-mode circuit with tunable output range. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Vancouver, Canada, 2004; 2:729–732.

    Google Scholar 

  17. Ercegovac MD, Lang T. Division and square root: digit-recurrence algorithms and implementations. Kluwer Academic Publisher, 1994.

    Google Scholar 

  18. Drakakis EM, Payne AJ, Toumazou C. Log-domain filtering and the Bernoulli cell. IEEE Transactions on Circuits and Systems I 1999; 46(5):559–571.

    Article  Google Scholar 

  19. Proakis J, Manolakis DG. Digital signal processing: principles, algorithms and applications. Pearson US Imports and PHIPEs, 1995.

    Google Scholar 

  20. Hierlemann A, Baltes H. CMOS-based chemical microsensors. Analyst 2003; 128(1):15–28.

    Article  Google Scholar 

  21. Bausells J, Carrabina J, Errachid A, Merlos A. Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors and Actuators B: Chemical 1999; 57(1–3):56–62.

    Article  Google Scholar 

  22. Wong HS, White MH. A CMOS-integrated ISFET-operational amplifier chemical sensor employing differential sensing. IEEE Transactions on Electron Devices 1989; 36(3):479–487.

    Article  Google Scholar 

  23. Nam H, Cha GS, Strong TD, Ha J, Sim H, Hower RW, et al. Micropotentiometric sensors. Proceedings of the IEEE 2003; 91(6):870–880.

    Article  Google Scholar 

  24. Bergveld P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators B: Chemical 2003; 88(1):1–20.

    Article  Google Scholar 

  25. Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering 1970; BM17(1):70–71.

    Google Scholar 

  26. Sibbald A, Covington AK, Carter RF. Online patient-monitoring system for the simultaneous analysis of blood K+, Ca2+, Na+ and pH using a quadruple-function CHEMFET integrated-circuit sensor. Medical and Biological Engineering and Computing 1985; 23(4):329–338.

    Article  Google Scholar 

  27. Watanabe K, Tohda K, Sugimoto H, Eitoku F, Inoue H, Suzuki K, et al. Ionsensitive field effect transistor as a monovalent cation detector for ion chromatography and its application to the measurement of Na+ and K+ concentrations in serum. Journal of Chromatography 1991; 566(1):109–116.

    Article  Google Scholar 

  28. Van der Wal PD, van den Berg A, Derooij NF. Universal approach for the fabrication of Ca(2+)-, K+-and NO3- - sensitive membrane ISFETs. Sensors and Actuators B: Chemical 1994; 18(1–3):200–207.

    Google Scholar 

  29. Tsukada K, Miyahara Y, Shibata Y, Miyagi H. An integrated chemical sensor with multiple ion and gas sensors. Sensors and Actuators B: Chemical 1990; 2(4):291–295.

    Article  Google Scholar 

  30. Arquint P, van den Berg A, van der Schoot BH, de Rooij NF, Buhler H, Morf WE, et al. Integrated blood-gas sensor for pO2, pCO2 and pH. Sensors and Actuators B: Chemical 1993; 13(1–3):340–344.

    Article  Google Scholar 

  31. Han JH, Cui DF, Li YT, Cai J, Dong Z, Zhang H, et al. A new-type of transcutaneous pCO2 sensor. Sensors and Actuators B: Chemical 1995; 24(1–3):156–158.

    Google Scholar 

  32. Janata J, Moss SD. Chemically sensitive field-effect transistors. Biomedical Engineering 1976; 11(7):241–245.

    Google Scholar 

  33. Caras S, Janata J. Field-effect transistor sensitive to penicillin. Analytical Chemistry 1980; 52(12):1935–1937.

    Article  Google Scholar 

  34. Schoning MJ, Poghossian A. Recent advances in biologically sensitive fieldeffect transistors (BioFETs). Analyst 2002; 127(9):1137–1151.

    Article  Google Scholar 

  35. Dzyadevych SV, Soldatkin AP, Korpan YI, Arkypova VN, El’skaya AV, Chovelon JM, et al. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Analytical and Bioanalytical Chemistry 2003; 377(3):496–506.

    Article  Google Scholar 

  36. Shepherd L, Toumazou C. Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sensors and Actuators B: Chemical 2005; 107(1):468–473.

    Article  Google Scholar 

  37. Martinoia S, Massobrio G. A behavioral macromodel of the ISFET in SPICE. Sensors and Actuators B: Chemical 2000; 62(3):182–189.

    Article  Google Scholar 

  38. Andreou AG, Boahen KA. Translinear circuits in subthreshold MOS. Analog Integrated Circuits and Signal Processing 1996; 9(2):141–166.

    Article  Google Scholar 

  39. Shepherd LM, Toumazou C. A biochemical translinear principle with weak inversion ISFETs. IEEE Transactions on Circuits and Systems I 2005.

    Google Scholar 

  40. Diamond D. Principles of chemical and biological sensors. Wiley Interscience, 1998.

    Google Scholar 

  41. Moini A. Vision chips. Kluwer Academic Publishers, 1999.

    Google Scholar 

  42. Constandinou TG, Georgiou J, Toumazou C. Towards a bio-inspired mixed-signal retinal processor. In: Proceedings of IEEE International Symposium on Circuits and Systems 2004; 5:493–496.

    Google Scholar 

  43. Constandinou TG, Georgiou J, Toumazou C. Nano-power mixed-signal tunable edge-detection circuit for pixel-level processing in next generation vision systems. Electronics Letters 2003; 39(25):1774–1775.

    Article  Google Scholar 

  44. Toumazou C, Georgiou J, Drakakis EM. Current-mode analogue circuit representation of Hodgkin and Huxley neuron equations. Electronics Letters 1998; 34(14):1376–1377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shepherd, L., Constandinou, T.G., Toumazou, C. (2006). Towards Ultra-Low Power Bio-Inspired Processing. In: Yang, GZ. (eds) Body Sensor Networks. Springer, London. https://doi.org/10.1007/1-84628-484-8_7

Download citation

  • DOI: https://doi.org/10.1007/1-84628-484-8_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-272-0

  • Online ISBN: 978-1-84628-484-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics