Skip to main content

Ensemble Hidden Markov Models with Extended Observation Densities for Biosignal Analysis

  • Chapter
Probabilistic Modeling in Bioinformatics and Medical Informatics

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Summary

Hidden Markov Models (HMM) have proven to be very useful in a variety of biomedical applications. The most established method for estimating HMM parameters is the maximum likelihood method which has shortcomings, such as repeated estimation and penalisation of the likelihood score, that are well known. This paper describes a variational learning approach to try and improve on the maximum-likelihood estimators. Emphasis lies on the fact that for HMMs with observation models that are from the exponential family of distributions, all HMM parameters and hidden state variables can be derived from a single loss function, namely the Kullback-Leibler divergence. Practical issues, such as model initialisation and choice of model order, are described. The paper concludes with application of three types of observation model HMMs to a variety of biomedical data, such as EEG and ECG, from different physiological experiments and conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Bernardo and A.F.M. Smith. Bayesian Theory. John Wiley and Sons, 1994.

    Google Scholar 

  2. T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons, New York, 1991.

    Google Scholar 

  3. A. Flexer, G. Dorffner, P. Sykacek, and I. Rezek. An automatic, continuous and probabilistic sleep stager based on a hidden Markov model. Applied Artificial Intelligence, 16(3):199–207, 2002.

    Article  Google Scholar 

  4. A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, 2000.

    Google Scholar 

  5. A.K. Gupta and D.K. Nagar. Matrix Variate Distributions. Monographs and Surveys in Pure and Applied Mathematics. Number 104. Chapman & Hall/CRC, 2000.

    Google Scholar 

  6. M. Haft, R. Hofmann, and V. Tresp. Model-independent mean field theory as a local method for approximate propagation of information. Computation in Neural Systems, 10:93–105, 1999.

    Article  Google Scholar 

  7. D. Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995.

    Google Scholar 

  8. T.S. Jaakkola. Tutorial on variational approximation methods. In M. Opper and D. Saad, editors, Advanced Mean Field Methods: Theory and Practice. MIT Press, 2000.

    Google Scholar 

  9. T.S. Jaakkola and M.I. Jordan. Improving the mean field approximation via the use of mixture distributions. In M.I. Jordan, editor, Learning in Graphical Models. Kluwer Academic Press, 1997.

    Google Scholar 

  10. M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to variational methods for graphical models. In M.I. Jordan, editor, Learning in Graphical Models. Kluwer Academic Press, 1997.

    Google Scholar 

  11. B. Kemp. Model-based monitoring of human sleep stages. PhD thesis, Twente University of Technology, The Netherlands, 1987.

    Google Scholar 

  12. D.J.C. MacKay. Ensemble learning for hidden Markov models. Technical Report, Cavendish Laboratory, 1998.

    Google Scholar 

  13. B. Obermeier, C. Guger, C. Neuper, and G. Pfurtscheller. Hidden Markov models for online classification of single trial EEG. Pattern Recognition Letters, 22:1299–1309, 2001.

    Article  Google Scholar 

  14. C. Pastelak-Price. Das internationale 10–20-System zur Elektrodenplazierung: Begründung, praktische Anleitung zu den Meßschritten und Hinweise zum Setzen der Elektroden. EEG-Labor, 5:49–72, 1983.

    Google Scholar 

  15. W.D. Penny, R. Everson, and S.J. Roberts. Hidden Markov independent component analysis. In M. Girolami, editor, Advances in Independent Component Analysis. Springer Verlag, 2000.

    Google Scholar 

  16. W.D. Penny and S.J. Roberts. Dynamic models for nonstationary signal segmentation. Computers and Biomedical Research, 32(6):483–502, 1999.

    Article  Google Scholar 

  17. L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceeding of the IEEE, 77(2):257–284, 1989.

    Article  Google Scholar 

  18. A. Rechtschaffen and A. Kales (eds). A manual of standardized terminology, techniques and schoring system for sleep stages in human subjects. US Public Health Service, US Government Printing Office, Washington DC, 1968.

    Google Scholar 

  19. I. Rezek and S.J. Roberts. Stochastic complexity measures for physiological signal analysis. IEEE Transactions on Biomedical Engineering, 44 (9):1186–1191, 1998.

    Article  Google Scholar 

  20. C.P. Robert, T. Rydén, and D.M. Titterington. Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. Journal of the Royal Statistical Society, Series B, 62(1):57–75, 2000.

    Article  MathSciNet  Google Scholar 

  21. O. Rompelman, J.B. Snijders, and C. van Spronsen. The measurement of heart rate variability spectra with the help of a personal computer. IEEE Transactions on Biomedical Engineering, 29:503–510, 1982.

    Google Scholar 

  22. P. Sykacek and S.J. Roberts. Bayesian time series classification. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, 2001.

    Google Scholar 

  23. N. Ueda, R. Nakano, Z. Ghahramani, and G.E. Hinton. SMEM algorithm for mixture models. Neural Computation, 12(9):2109–2128, 2000.

    Article  Google Scholar 

  24. S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, V. Valtchev, and P. Woodland. The HTK Book. Entropic, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rezek, I., Roberts, S. (2005). Ensemble Hidden Markov Models with Extended Observation Densities for Biosignal Analysis. In: Husmeier, D., Dybowski, R., Roberts, S. (eds) Probabilistic Modeling in Bioinformatics and Medical Informatics. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-119-9_14

Download citation

  • DOI: https://doi.org/10.1007/1-84628-119-9_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-778-0

  • Online ISBN: 978-1-84628-119-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics