Skip to main content

Tracer Kinetic Modeling in PET

  • Chapter
Positron Emission Tomography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization; theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.

    PubMed  CAS  Google Scholar 

  2. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:127–37.

    PubMed  CAS  Google Scholar 

  3. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol 1979;6:371–88.

    Article  PubMed  CAS  Google Scholar 

  4. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Non-invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980;238:E69–82.

    PubMed  CAS  Google Scholar 

  5. Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 1985;5:179–92.

    PubMed  CAS  Google Scholar 

  6. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, et al. Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 1985;5(2):163–78.

    PubMed  CAS  Google Scholar 

  7. Spence A, Graham M, Muzi M, Abbott G, Krohn K, Kapoor R, et al. Deoxyglucose lumped constant estimated in a transplanted rat astrocytic glioma by the hexose utilization index. J Cereb Blood Flow Metab 1990;10:190–8.

    PubMed  CAS  Google Scholar 

  8. Dienel GA, Cruz NF, Mori K, Holden JE, Sokoloff L. Direct measurement of the lambda of the lumped constant of the deoxyglucose method in rat brain: determination of lambda and lumped constant from tissue glucose concentration or equilibrium brain/plasma distribution ratio for methylglucose. J Cereb Blood Flow Metab 1991;11(1):25–34.

    PubMed  CAS  Google Scholar 

  9. Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L. Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 1991;11(2):171–82.

    PubMed  CAS  Google Scholar 

  10. Heymann M, Payne B, Hoffman J, Rudolph A. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 1977;20:55–79.

    PubMed  CAS  Google Scholar 

  11. Phelps ME, Huang S-C, Hoffman EJ, Selin C, Kuhl DE. Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability — surface area product. Stroke 1981;12:607–19.

    PubMed  CAS  Google Scholar 

  12. Neirinckx R, Canning L, Piper I, Nowotnik D, Pickett R, Holmes R, et al. Tc-99m d,1-HM-PAO: A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987;28:191–202.

    PubMed  CAS  Google Scholar 

  13. Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 1951;3:1–41.

    PubMed  CAS  Google Scholar 

  14. Zierler KL. Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. In: Handbook of physiology. Baltimore: Waverly Press; 1962. p. 585–615.

    Google Scholar 

  15. Lassen NA, Perl W. Tracer kinetic methods in medical physiology. New York: Raven Press; 1979.

    Google Scholar 

  16. Carson ER, Cobelli C, Finkelstein L. The mathematical modeling of metabolic and endocrine systems. New York: Wiley; 1983.

    Google Scholar 

  17. Lambrecht R, Rescigno A, editors. Tracer kinetics and physiological modeling. Berlin: Springer-Verlag; 1983.

    Google Scholar 

  18. Peters A. A unified approach to quantification by kinetic analysis in Nuclear Medicine. J Nucl Med 1993;34:706–13.

    PubMed  CAS  Google Scholar 

  19. DiStefano JJ. Non-compartmental vs. compartmental analysis: Some basis for choice. Am J Physiol 1982;243:R1–6.

    PubMed  Google Scholar 

  20. Johnson J, Wilson T. A model for capillary exchange. Am J Physiol 1966;210:1299–303.

    PubMed  CAS  Google Scholar 

  21. Bassingthwaighte JB. A concurrent flow model for extraction during transcapillary passage. Circ Res 1974;35:483–503.

    PubMed  CAS  Google Scholar 

  22. Bassingthwaighte JB, Holloway GA. Estimation of blood flow with radioactive tracers. Semin Nucl Med 1976;6:141–61.

    Article  PubMed  CAS  Google Scholar 

  23. Goresky CA, Ziegler WH, Bach GG. Capillary exchange modeling: Brain-limited and flow-limited distribution. Circ Res 1970;27:739–64.

    PubMed  CAS  Google Scholar 

  24. Rose CP, Goresky CA. Constraints on the uptake of labeled palmitate by the heart. Circ Res 1977;41:534–45.

    PubMed  CAS  Google Scholar 

  25. Larson KB, Markham J, Raichle ME. Comparison of distributed and compartmental models for analysis of cerebral blood flow measurements. J Cereb Blood Flow Metab 1985;5(Suppl 1):S649–50.

    Google Scholar 

  26. Larson KB, Markham J, Raichle ME. Tracer-kinetic models for measuring cerebral blood flow using externally detected radiotracers. J Cereb Blood Flow Metab 1987;7: 443–63.

    PubMed  CAS  Google Scholar 

  27. van Osdol W, Sung C, Dedrick R, Weinstein J. A distributed pharmacokinetic model of two-step imaging and treatment protocols using streptavidin-conjugated monoclonal antibodies and radiolabeled biotin. J Nucl Med 1993;34:1552–64.

    PubMed  Google Scholar 

  28. Jacquez JA. Compartmental analysis in biology and medicine. Amsterdam, Holland: Elsevier/North; 1972.

    Google Scholar 

  29. Wagner JG. Fundamentals of clinical pharmacokinetics. Hamilton, Ill.: Drug Intelligence Publications; 1975.

    Google Scholar 

  30. Anderson D. Compartmental modeling and tracer kinetics. Berlin: Springer-Verlag; 1983.

    Google Scholar 

  31. Robertson J, editor. Compartmental distribution of radiotracers. Boca Raton, FL: CRC Press; 1983.

    Google Scholar 

  32. Huang SC, Barrio JR, Phelps ME. Neuroreceptor assay with positron emission tomography. J Cereb Blood Flow Metab 1986;6:515–21.

    PubMed  CAS  Google Scholar 

  33. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205–10.

    PubMed  CAS  Google Scholar 

  34. Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 1964;58:292–305.

    Article  Google Scholar 

  35. Lehninger A. Biochemistry. New York: Worth Publishers; 1975.

    Google Scholar 

  36. Eckelman W, editor. Receptor-binding radiotracers. Boca Raton, FL: CRC Press; 1982.

    Google Scholar 

  37. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review. J Cereb Blood Flow Metab 2000;20(3):423–51.

    PubMed  CAS  Google Scholar 

  38. Braun M. Differential equations and their applications. New York: Springer-Verlag; 1975.

    Google Scholar 

  39. Feng D, Huang S, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 1993;32:95–110.

    Article  PubMed  CAS  Google Scholar 

  40. Gear C. Numerical initial value problems in ordinary differential equations. Englewood Cliffs, NJ: Prentice-Hall; 1971.

    Google Scholar 

  41. Press W, Flannery B, Teukolsy S, Vetterling W. Numerical Recipes: The art of scientific computing. Cambridge: Cambridge University Press; 1986.

    Google Scholar 

  42. Bard Y. Nonlinear parameter estimation: Academic Press, New York; 1974.

    Google Scholar 

  43. Beck JV, Arnold KJ. Parameter estimation in engineering and science. New York: John Wiley & Sons; 1977.

    Google Scholar 

  44. Carson RE. Parameter estimation in positron emission tomography. In: Phelps ME, Mazziotta JC, Schelbert HR, editors. Positron emission tomography and autoradiography. New York: Raven Press; 1986. p. 347–90.

    Google Scholar 

  45. Sorenson JA, Phelps ME. Physics in nuclear medicine. 2nd ed. Orlando: Grune & Stratton; 1987.

    Google Scholar 

  46. Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH. Quantitative potentials of dynamic emission computed tomography. J Nucl Med 1978;19:309–15.

    PubMed  CAS  Google Scholar 

  47. Alpert NM, Chesler DA, Correia JA, Ackerman RH, Chang JY, Finklestein S, et al. Estimation of the local statistical noise in emission computed tomography. IEEE Trans Med Imag 1982;1:142–6.

    Article  CAS  Google Scholar 

  48. Huesman RH. A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Phys Med Biol 1984;29(5):543–52.

    Article  PubMed  CAS  Google Scholar 

  49. Alpert NM, Barker WC, Gelman A, Weise S, Senda M, Correia JA. The precision of positron emission tomography: theory and measurement. J Cereb Blood Flow Metab 1991;11(2):A26–30.

    PubMed  CAS  Google Scholar 

  50. Haynor DR, Harrison RL, Lewellen TK. The use of importance sampling techniques to improve the efficiency of photon tracking in emission tomography simulations. Med Phys 1991;18(5):990–1001.

    Article  PubMed  CAS  Google Scholar 

  51. Carson RE, Yan Y, Daube-Witherspoon ME, Freedman N, Bacharach SL, Herscovitch P. An approximation formula for the variance of PET region-of-interest values. IEEE Trans Med Imag 1993;12:240–50.

    Article  CAS  Google Scholar 

  52. Pajevic S, Daube-Witherspoon ME, Bacharach SL, Carson RE. Noise characteristics of 3-D and 2-D PET images. IEEE Trans Med Imaging 1998;17(1):9–23.

    Article  PubMed  CAS  Google Scholar 

  53. Eastman R, Carson R, Gordon M, Berg G, Lillioja S, Larson S, et al. Brain glucose metabolism in non-insulin-dependent diabetes mellitus: A study in Pima Indians using positron emission tomography during hyperinsulinemia with euglycemic glucose clamp. J Clin Endocrinol Metab 1990;71:1602–10.

    Article  PubMed  CAS  Google Scholar 

  54. Holden JE, Gatley SJ, Hichwa RD, Ip WR, Shaughnessy WJ, Nickles RJ, et al. Cerebral blood flow using PET measurements of fluoromethane kinetics. J Nucl Med 1981;22:1084–8.

    PubMed  CAS  Google Scholar 

  55. Koeppe RA, Holden JE, Ip WR. Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab 1985;5:224–34.

    PubMed  CAS  Google Scholar 

  56. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]Flumazenil kinetic for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 1991;11:735–44.

    PubMed  CAS  Google Scholar 

  57. Frey KA, Holthoff VA, Koeppe RA, Jewett DM, Kilbourn MR, Kuhl DE. Parametric in vivo imaging of benzodiazepine receptor distribution in human brain. Ann Neurol 1991;30(5):663–72.

    Article  PubMed  CAS  Google Scholar 

  58. Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC. Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab 1998;18(10):1130–42.

    Article  PubMed  CAS  Google Scholar 

  59. Huang S, Carson R, Phelps M. Measurement of local blood flow and distribution volume with short-lived isotopes: A general input technique. J Cereb Blood Flow Metab 1982;2:99–108.

    PubMed  CAS  Google Scholar 

  60. Huang S-C, Carson RE, Hoffman EJ, Carson J, MacDonald N, Barrio JR, et al. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water. J Cereb Blood Flow Metab 1983;3:141–53.

    PubMed  CAS  Google Scholar 

  61. Alpert NM, Eriksson L, Chang JY, Bergstrom M, Litton JE, Correia JA, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab 1984;4:28–34.

    PubMed  CAS  Google Scholar 

  62. Blomqvist G. On the construction of functional maps in positron emission tomography. J Cereb Blood Flow Metab 1984;4:629–32.

    PubMed  CAS  Google Scholar 

  63. Carson RE, Huang SC, Green MV. Weighted integration method for local cerebral blood flow measurements with positron emission tomography. J Cereb Blood Flow Metab 1986;6(2):245–58.

    PubMed  CAS  Google Scholar 

  64. Blomqvist G, Pauli S, Farde L, Eriksson L, Persson A, Halldin C. Maps of receptor binding parameters in human brain — a kinetic analysis of PET measurements. Eur J Nucl Med 1990;16:257–65.

    Article  PubMed  CAS  Google Scholar 

  65. Yokoi T, Kanno I, Iida H, Miura S, Uemura K. A new approach of weighted integration technique based on accumulated images using dynamic PET and H2 15O. J Cereb Blood Flow Metab 1991;11:492–501.

    PubMed  CAS  Google Scholar 

  66. Carson RE. PET parameter estimation using linear integration methods: Bias and variability considerations. In: Uemura K, Lassen NA, Jones Y, Kanno I, editors. Quantification of brain function. Tracer kinetics and image analysis in brain PET. Amsterdam: Elsevier Science Publishers; 1993. p. 499–507.

    Google Scholar 

  67. Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 1993;13(1):15–23.

    PubMed  CAS  Google Scholar 

  68. Howman-Giles R, Moase A, Gaskin K, Uren R. Hepatobiliary scintigraphy in a pediatric population: Determination of hepatic extraction fraction by deconvolution analysis. J Nucl Med 1993;34:214–21.

    PubMed  CAS  Google Scholar 

  69. Huang SC, Phelps ME. Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In: Phelps M, Mazziotta J, Schelbert H, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press; 1986. p. 287–346.

    Google Scholar 

  70. Carson RE. The development and application of mathematical models in nuclear medicine [editorial]. J Nucl Med 1991;32(12):2206–8.

    PubMed  CAS  Google Scholar 

  71. Berman M, Schoenfeld R. Invariants in experimental data on linear kinetics and the formulation of models. J Appl Physiol 1956;27:1361–70.

    Article  CAS  Google Scholar 

  72. Berman M. The formulation of testing models. Ann N Y Acad Sci 1963;108:192–4.

    Google Scholar 

  73. Carson ER, Jones EA. Use of kinetic analysis and mathematical modeling in the study of metabolic pathway in vivo. N Engl J Med 1979;300:1016–27.

    Article  PubMed  CAS  Google Scholar 

  74. Carson ER, Cobelli C, Finkelstein L. Modeling and identification of metabolic systems. Am J Physiol 1981;240:R120–9.

    PubMed  CAS  Google Scholar 

  75. Cobelli C, Ruggerin A. Evaluation of alternative model structures of metabolic systems: Two case studies on model identification and validation. Med Biol Eng Comput 1982;20:444–50.

    PubMed  CAS  Google Scholar 

  76. DiStefano J, Landaw E. Multiexponential, multicompartmental, and non-compartmental modeling. I. Methodological limi tations and physiological interpretations. Am J Physiol 1984;246:R651–64.

    PubMed  Google Scholar 

  77. Landaw EW, DiStefano JJ. Multiexponential, multicompartmental and noncompartmental modeling. II. Data analysis and statistical considerations. Am J Physiol 1984;246:R665–77.

    PubMed  CAS  Google Scholar 

  78. Vera D, Krohn K, Scheibe P, Stadalnik R. Identifiability analysis of an in vivo receptor-binding radiopharmacokinetic system. IEEE Trans Biomed Eng 1985;32:312–22.

    PubMed  CAS  Google Scholar 

  79. Delforge J, Syrota A, Mazoyer BM. Experimental design optimisation: theory and application to estimation of receptor model parameters using dynamic positron emission tomography. Phys Med Biol 1989;34(4):419–35.

    Article  PubMed  CAS  Google Scholar 

  80. Delforge J, Syrota A, Mazoyer BM. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng 1990;37(7):653–61.

    Article  PubMed  CAS  Google Scholar 

  81. Wong DR, Gjedde A, Wagner HM. Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 1986;6:137–46.

    PubMed  CAS  Google Scholar 

  82. Watabe H, Channing MA, Der MG, Adams HR, Jagoda E, Herscovitch P, et al. Kinetic analysis of the 5-HT2A ligand [C-11]MDL 100,907. J Cereb Blood Flow Metab 2000;20(6):899–909.

    PubMed  CAS  Google Scholar 

  83. Salmon E, Brooks DJ, Leenders KL, Turton DR, Hume SP, Cremer JE, et al. A two-compartment description and kinetic procedure for measuring regional cerebral [11C]nomifensine uptake using positron emission tomography. J Cereb Blood Flow Metab 1990;10:307–16.

    PubMed  CAS  Google Scholar 

  84. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, et al. Comparison of bolus and infusion methods for receptor quantitation: Application to [18F]-cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 1993;13:24–42.

    PubMed  CAS  Google Scholar 

  85. Akaike H. An information criterion (AIC). Math Sci 1976;14:5–9.

    Google Scholar 

  86. Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461–4.

    Google Scholar 

  87. Theodore WH, Carson RE, Andreason P, Zametkin A, Blasberg R, Leiderman DB, et al. PET imaging of opiate receptor binding in human epilepsy using [18F]cyclofoxy. Epilepsy Res 1992;13:129–39.

    Article  PubMed  CAS  Google Scholar 

  88. Cohen RM, Andreason PJ, Doudet DJ, Carson RE, Sunderland T. Opiate receptor avidity and cerebral blood flow in Alzheimer’s disease. J Neurol Sci 1997;148(2):171–80.

    Article  PubMed  CAS  Google Scholar 

  89. Kling MA, Carson RE, Borg L, Zametkin A, Matochik JA, Schluger J, et al. Opioid receptor imaging with positron emission tomography and [(18)F]cyclofoxy in long-term, methadone-treated former heroin addicts. J Pharmacol Exp Ther 2000;295(3):1070–6.

    PubMed  CAS  Google Scholar 

  90. Gjedde A, Reith J, Dyve S, Leger G, Guttman M, Diksic M, et al. Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA 1991;88(7):2721–5.

    Article  PubMed  CAS  Google Scholar 

  91. Kuwabara H, Evans AC, Gjedde A. Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 1990;10(2):180–9.

    PubMed  CAS  Google Scholar 

  92. Kuwabara H, Cumming P, Reith J, Leger G, Diksic M, Evans AC, et al. Human striatal L-dopa decarboxylase activity estimated in vivo using 6-[18F]fluoro-dopa and positron emission tomography: error analysis and application to normal subjects. J Cereb Blood Flow Metab 1993;13(1):43–56.

    PubMed  CAS  Google Scholar 

  93. Shoghi-Jadid K, Huang SC, Stout DB, Yee RE, Yeh EL, Farahani KF, et al. Striatal kinetic modeling of FDOPA with a cerebellar-derived constraint on the distribution volume of 3OMFD: A PET investigation using non-human primates. J Cereb Blood Flow Metab 2000;20(7):1134–48.

    PubMed  CAS  Google Scholar 

  94. Frost JJ, Douglass DH, Mayberg HS, Dannals RF, Links JM, Wilson AA, et al. Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography. J Cereb Blood Flow Metab 1989;9:398–409.

    PubMed  CAS  Google Scholar 

  95. Farde L, Eriksson L, Blomquist G, Halldin C. Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET: A comparison to the equilibrium analysis. J Cereb Blood Flow Metab 1989;9:696–708.

    PubMed  CAS  Google Scholar 

  96. Carson RE, Blasberg RG, Channing MA, Yolles PS, Dunn BB, Newman AH, et al. A kinetic study of the active and inactive enantiomers of 18F-cyclofoxy with PET. J Cereb Blood Flow Metab 1989;9:S16.

    Google Scholar 

  97. Delforge J, Syrota A, Bottlaender M, Varastet M, Loc’h C, Bendriem B, et al. Modeling analysis of [11-C]flumazenil kinetics studied by PET: Application to a critical study of the equilibrium approaches. J Cereb Blood Flow Metab 1993;13:454–68.

    PubMed  CAS  Google Scholar 

  98. Price J, Mayberg H, Dannals R, Wilson A, Ravert H, Sadzot B, et al. Measurement of benzodiazepine receptor number and affinity in humans using tracer kinetic modeling, positron emission tomography, and [11C]flumazenil. J Cereb Blood Flow Metab 1993;13:656–67.

    PubMed  CAS  Google Scholar 

  99. Parsey RV, Slifstein M, Hwang DR, Abi-Dargham A, Simpson N, Mawlawi O, et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-C-11]WAY-100635 in humans: Comparison of arterial and reference tissue input functions. J Cereb Blood Flow Metab 2000;20(7):1111–33.

    Article  PubMed  CAS  Google Scholar 

  100. Holthoff VA, Koeppe RA, Frey KA, Paradise AH, Kuhl DE. Differentiation of radioligand delivery and binding in the brain: validation of a two-compartment model for [11C]flumazenil. J Cereb Blood Flow Metab 1991;11(5):745–52.

    PubMed  CAS  Google Scholar 

  101. Carson RE, Breier A, de Bartolomeis A, Saunders RC, Su TP, Schmall B, et al. Quantification of amphetamine-induced changes in [11C]raclopride binding with continuous infusion. J Cereb Blood Flow Metab 1997;17(4):437–47.

    Article  PubMed  CAS  Google Scholar 

  102. Koeppe RA, Frey KA, Kume A, Albin R, Kilbourn MR, Kuhl DE. Equilibrium versus compartmental analysis for assessment of the vesicular monoamine transporter using (+)-alpha-[c-11] dihydrotetrabenazine (dtbz) and positron emission tomography. J Cereb Blood Flow Metab 1997;17(9):919–31.

    Article  PubMed  CAS  Google Scholar 

  103. Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [C-11]raclopride binding. J Cereb Blood Flow Metab 1998;18(9):941–50.

    Article  PubMed  CAS  Google Scholar 

  104. Nelson T, Lucignani G, Goochee J, Crane AM, Sokoloff L. Invalidity of criticisms of the deoxyglucose method based on alleged glucose-6-phosphatase activity in brain. J Neurochem 1986;46:905–19.

    PubMed  CAS  Google Scholar 

  105. Benveniste H. Brain microdialysis. J Neurochem 1989;52:1667–79.

    PubMed  CAS  Google Scholar 

  106. Carson RE. Precision and accuracy considerations of physiological quantitation in PET. J Cereb Blood Flow Metab 1991;11:A45–50.

    PubMed  CAS  Google Scholar 

  107. Gjedde A. High-and low-affinity transport of D-glucose from blood to brain. J Neurochem 1981;36:1463–71.

    PubMed  CAS  Google Scholar 

  108. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.

    PubMed  CAS  Google Scholar 

  109. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985;5:584–90.

    PubMed  CAS  Google Scholar 

  110. Martin W, Palmer M, Patlak C, Calne D. Nigrostriatal function in humans studied with positron emission tomography. Ann Neurol 1989;20:535–42.

    Article  Google Scholar 

  111. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schyler DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-Cocaine: PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740–7.

    PubMed  CAS  Google Scholar 

  112. Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with Iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med 1993;34:498–505.

    PubMed  CAS  Google Scholar 

  113. Choi Y, Hawkins RA, Huang SC, Gambhir SS, Brunken RC, Phelps ME, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991;32(4):733–8.

    PubMed  CAS  Google Scholar 

  114. Shoaf SE, Carson RE, Hommer D, Williams WA, Higley JD, Schmall B, et al. The suitability of [C-11]-alpha-methyl-L-tryptophan as a tracer for serotonin synthesis: Studies with dual administration of [C-11] and [C-14] labeled tracer. J Cereb Blood Flow Metab 2000;20(2):244–52.

    Article  PubMed  CAS  Google Scholar 

  115. Carson RE, Lan LX, Watabe H, Der MG, Adams HR, Jagoda E, et al. PET evaluation of [F-18]FCWAY, an analog of the 5-HT1A receptor antagonist, WAY-100635. Nucl Med Biol 2000;27(5):493–7.

    Article  PubMed  CAS  Google Scholar 

  116. Weinberg I, Huang S, Hoffman E, Araujo L, Nienaber C, Grover-McKay M, et al. Validation of PET-acquired input functions for cardiac studies. J Nucl Med 1988;29:241–7.

    PubMed  CAS  Google Scholar 

  117. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 1992;33(9):1669–77.

    PubMed  CAS  Google Scholar 

  118. Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME. Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 1992;33(4):613–20.

    PubMed  CAS  Google Scholar 

  119. Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor-analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 1995;36(9):1714–22.

    PubMed  CAS  Google Scholar 

  120. Green LA, Gambhir SS, Srinivasan A, Banerjee PK, Hoh CK, Cherry SR, et al. Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-18-fluorodeoxyglucose. J Nucl Med 1998;39(4):729–34.

    PubMed  CAS  Google Scholar 

  121. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, F-18-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 1998;18(7):716–23.

    Article  PubMed  CAS  Google Scholar 

  122. Hume SP, Myers R, Bloomfield PM, Opacka JJ, Cremer JE, Ahier RG, et al. Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 1992;12(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  123. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.

    Article  PubMed  CAS  Google Scholar 

  124. Watabe H, Hatazawa J, Ishiwata K, Ido T, Itoh M, Iwata R, et al. Linearized method — a new approach for kinetic analysis of central dopamine D-2 receptor-specific binding. IEEE Trans Med Imag 1995;14(4):688–96.

    Article  CAS  Google Scholar 

  125. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997;6(4):279–87.

    Article  PubMed  CAS  Google Scholar 

  126. Ichise M, Ballinger JR, Golan H, Vines D, Luong A, Tsao S, et al. Noninvasive quantification of dopamine D2 receptors with Iodine-123-IBF SPECT. J Nucl Med 1996;37:513–20.

    PubMed  CAS  Google Scholar 

  127. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16(5):834–40.

    Article  PubMed  CAS  Google Scholar 

  128. Frackowiak RSJ, Lenzi G-L, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: Theory, procedure and normal values. J Comput Assist Tomogr 1980;4:727–36.

    PubMed  CAS  Google Scholar 

  129. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 1983;24:782–9.

    PubMed  CAS  Google Scholar 

  130. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983;24:790–8.

    PubMed  CAS  Google Scholar 

  131. Brooks RA. Alternative formula for glucose utilization using labeled deoxyglucose. J Nucl Med 1982;23:538–9.

    PubMed  CAS  Google Scholar 

  132. Hutchins GD, Holden JE, Koeppe RA, Halama JR, Gatley SJ, Nickles RJ. Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metab 1984;4:35–40.

    PubMed  CAS  Google Scholar 

  133. Wilson PD, Huang SC, Hawkins RA. Single-scan Bayes estimation of cerebral glucose metabolic rate: comparison with non-Bayes single-scan methods using FDG PET scans in stroke. J Cereb Blood Flow Metab 1988;8(3):418–25.

    PubMed  CAS  Google Scholar 

  134. Frey KA, Ehrenkaufer RLE, Beaucage S, Agranoff BW. Quantitative in vivo receptor binding. I. Theory and application to the muscarinic cholinergic receptor. J Neurosci 1985;5:421–8.

    PubMed  CAS  Google Scholar 

  135. Laruelle M, Abi-Dargham A, Rattner Z, Al-Tikriti M, Zea-Ponce Y, Zoghbi S, et al. Single photon emission tomography measurement of benzodiazepine receptor number and affinity in primate brain: a constant infusion paradigm with [123I]iomazenil. Eur J Pharmacol 1993;230:119–23.

    Article  PubMed  CAS  Google Scholar 

  136. Mintun MA, Raichle ME, Kilbourn MR, Wooton GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984;15:217–27.

    Article  PubMed  CAS  Google Scholar 

  137. Kawai R, Carson RE, Dunn B, Newman AH, Rice KC, Blasberg RG. Regional brain measurement of Bmax and KD with the opiate antagonist cyclofoxy: Equilibrium studies in the conscious rat. J Cereb Blood Flow Metab 1991;11(4):529–44.

    PubMed  CAS  Google Scholar 

  138. Carson RE, Doudet DJ, Channing MA, Dunn BB, Der MG, Newman AH, et al. Equilibrium measurement of Bmax and KD of the opiate antagonist 18F-cyclofoxy with PET: Pixel-by-pixel analysis. J Cereb Blood Flow Metab 1991;11:S618.

    Google Scholar 

  139. Farde L, Hall H, Ehrin E, Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 1986;231:258–61.

    PubMed  CAS  Google Scholar 

  140. Dewey SL, Smith GS, Logan J, Brodie JD, Fowler JS, Wolf AP. Striatal binding of the PET ligand 11C-raclopride is altered by drugs that modify synaptic dopamine levels. Synapse 1993;13:350–6.

    Article  PubMed  CAS  Google Scholar 

  141. Dewey SL, Smith GS, Logan J, Brodie JD, Yu DW, Ferrieri RA, et al. GABAergic inhibition of endogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography. J Neurosci 1992;12(10):3773–80.

    PubMed  CAS  Google Scholar 

  142. Dewey SL, Smith GS, Logan J, Alexoff D, Ding YS, King P, et al. Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis. J Neurosci 1995;15:821–9.

    PubMed  CAS  Google Scholar 

  143. Nordstrom AL, Farde L, Halldin C. Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology 1992;106:433–8.

    Article  PubMed  CAS  Google Scholar 

  144. Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. Psychopharmacology 1993;110(3):265–72.

    Article  PubMed  CAS  Google Scholar 

  145. Farde L, Nordström A-L, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients being treated with classic neuroleptic and clozapine. Arch Gen Psych 1992;49:538–44.

    CAS  Google Scholar 

  146. Fischman AJ, Bonab AA, Babich JW, Alpert NM, Rauch SL, Elmaleh DR, et al. Positron emission tomographic analysis of central 5-hydroxytryptamine(2) receptor occupancy in healthy volunteers treated with the novel antipsychotic agent, ziprasidone. J Pharmacol Exp Ther 1996;279(2):939–47.

    PubMed  CAS  Google Scholar 

  147. Breier A, Su T-P, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997;94(6):2569–74.

    Article  PubMed  CAS  Google Scholar 

  148. Laruelle M, Abi-Dargham A, vanDyck CH, Rosenblatt W, Zea-Ponce Y, Zoghbi SS, et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 1995;36(7):1182–90.

    PubMed  CAS  Google Scholar 

  149. Morris ED, Fisher RE, Alpert NM, Rauch SL, Fischman AJ. In vivo imaging of neuromodulation using positron emission tomography — optimal ligand characteristics and task length for detection of activation. Human Brain Mapping 1995;3(1):35–55.

    Article  Google Scholar 

  150. Muzic RF, Nelson AD, Saidel GM, Miraldi F. Optimal experiment design for PET quantification of receptor concentration. IEEE Trans Med Imag 1996;15(1):2–12.

    Article  CAS  Google Scholar 

  151. Huang SC, Zhou Y. Spatially coordinated regression for imagewise model fitting to dynamic PET data for generating parametric images. IEEE Trans Nucl Sci 1998;45(3):1194–9.

    Article  Google Scholar 

  152. Watabe H, Endres CJ, Breier A, Schmall B, Eckelman WC, Carson RE. Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations. J Nucl Med 2000;41(3):522–30.

    PubMed  CAS  Google Scholar 

  153. Slifstein M, Laruelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 2000;41(12):2083–8.

    PubMed  CAS  Google Scholar 

  154. Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3:299–308.

    PubMed  CAS  Google Scholar 

  155. Herscovitch P, Raichle ME. Effect of tissue heterogeneity on the measurement of cerebral blood flow with the equilibrium C15O2 inhalation technique. J Cereb Blood Flow Metab 1983;3:407–15.

    PubMed  CAS  Google Scholar 

  156. Herscovitch P, Raichle ME. Effect of tissue heterogeneity on the measurement of regional cerebral oxygen extraction and metabolic rate with positron emission tomography. J Cereb Blood Flow Metab 1985;5(Suppl 1):S671–2.

    Google Scholar 

  157. Herholz K, Patlak CS. The influence of tissue heterogeneity on results of fitting nonlinear model equations to regional tracer uptake curves: with an application to compartmental models used in positron emission tomography. J Cereb Blood Flow Metab 1987;7:214–29.

    PubMed  CAS  Google Scholar 

  158. Huang SC, Mahoney DK, Phelps ME. Quantitation in positron emission tomography: 8. Effects of nonlinear parameter estimation on functional images. J Comput Assist Tomogr 1987;11(2):314–25.

    PubMed  CAS  Google Scholar 

  159. Schmidt K, Mies G, Sokoloff L. Model of kinetic behavior of deoxyglucose in heterogeneous tissues in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models. J Cereb Blood Flow Metab 1991;11:10–24.

    PubMed  CAS  Google Scholar 

  160. Schmidt K, Lucignani G, Moresco R, Rizzo G, Gilardi M, Messa C, et al. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab 1992;12:823–34.

    PubMed  CAS  Google Scholar 

  161. Blomqvist G, Lammertsma AA, Mazoyer B, Wienhard K. Effect of tissue heterogeneity on quantification in positron emission tomography. Eur J Nucl Med 1995;22(7):652–63.

    Article  PubMed  CAS  Google Scholar 

  162. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12(4):571–83.

    PubMed  CAS  Google Scholar 

  163. Meltzer CC, Zubieta JK, Links JM, Brakeman P, Stumpf MJ, Frost JJ. MR-based correction of brain PET measurements for heterogeneous gray matter radioactivity distribution. J Cereb Blood Flow Metab 1996;16(4):650–8.

    Article  PubMed  CAS  Google Scholar 

  164. Meltzer CC, Kinahan PE, Greer PJ, Nichols TE, Comtat C, Cantwell MN, et al. Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 1999;40(12):2053–65.

    PubMed  CAS  Google Scholar 

  165. Labbe C, Koepp M, Ashburner J, Spinks T, Richardson M, Duncan J, et al. Absolute PET quantification with correction for partial volume effects within cerebral structures. In: Carson RE, Daube-Witherspoon ME, Herscovitch P, editors. Quantitative functional brain imaging with positron emission tomography. San Diego, CA: Academic Press; 1998. p. 67–76.

    Google Scholar 

  166. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39(5):904–11.

    PubMed  CAS  Google Scholar 

  167. Rousset OG, Deep P, Kuwabara H, Evans AC, Gjedde AH, Cumming P. Effect of partial volume correction on estimates of the influx and cerebral metabolism of 6-[(18)F]fluoro-L-dopa studied with PET in normal control and Parkinson’s disease subjects. Synapse 2000;37(2):81–9.

    Article  PubMed  CAS  Google Scholar 

  168. Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab 1983;13:416–24.

    Google Scholar 

  169. Evans AC, Diksic M, Yamamoto YL, Kato A, Dagher, Redies C, et al. Effect of vascular activity in the determination of rate constants for the uptake of 18F-labeled 2-fluoro-2-deoxy-D-glucose: error analysis and normal values in older subjects. J Cereb Blood Flow Metab 1986;6:724–38.

    PubMed  CAS  Google Scholar 

  170. Hawkins RA, Phelps ME, Huang SC. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab 1986;6(2):170–83.

    PubMed  CAS  Google Scholar 

  171. Koeppe RA, Hutchins GD, Rothley JM, Hichwa RD. Examination of assumptions for local cerebral blood flow studies in PET. J Nucl Med 1987;28(11):1695–703.

    PubMed  CAS  Google Scholar 

  172. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988;78(1):104–15.

    PubMed  CAS  Google Scholar 

  173. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation 1990;82(4):1377–86.

    PubMed  CAS  Google Scholar 

  174. Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;33(6):1243–50.

    PubMed  CAS  Google Scholar 

  175. Eriksson L, Kanno I. Blood sampling devices and measurements. Med Prog Technol 1991;17(3–4):249–57.

    PubMed  CAS  Google Scholar 

  176. Dhawan V, Conti J, Mernyk M, Jarden JO, Rottenberg DA. Accuracy of PET RCBF measurements: Effect of time shift between blood and brain radioactivity curves. Phys Med Biol 1986;31:507–14.

    Article  PubMed  CAS  Google Scholar 

  177. Dhawan V, Jarden JO, Strother S, Rottenberg DA. Effect of blood curve smearing on the accuracy of parameter estimates for [82-Rb] PET studies of blood-brain barrier permeability. Phys Med Biol 1988;33(1):61–74.

    Article  PubMed  CAS  Google Scholar 

  178. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography. J Cereb Blood Flow Metab 1988;8:285–8.

    PubMed  CAS  Google Scholar 

  179. Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H2 15O autoradiographic method and dynamic PET. J Nucl Med 1989;30:1069–78.

    PubMed  CAS  Google Scholar 

  180. Huesman RH, Mazoyer BM. Kinetic data analysis with a noisy input function. Phys Med Biol 1987;32(12):1569–79.

    Article  PubMed  CAS  Google Scholar 

  181. Chen KW, Huang SC, Yu DC. The effects of measurement errors in plasma radioactivity curve on parameter estimation in positron emission tomography. Phys Med Biol 1991;36(9):1183–200.

    Article  PubMed  CAS  Google Scholar 

  182. Markham J, Schuster DP. Effects of non-ideal input functions on PET measurements of pulmonary blood flow. J Appl Physiol 1992;72(6):2495–500.

    PubMed  CAS  Google Scholar 

  183. Feng D, Wang X. A computer simulation study on the effects of input function measurement noise in tracer kinetic modeling with positron emission tomography. Comput Biol Med 1993;23:57–68.

    Article  PubMed  CAS  Google Scholar 

  184. Huang SC, Barrio JR, Yu DC, Chen B, Grafton S, Melega WP, et al. Modelling approach for separating blood time-activity curves in positron emission tomographic studies. Phys Med Biol 1991;36(6):749–61.

    Article  PubMed  CAS  Google Scholar 

  185. Burger C, Buck A. Tracer kinetic modeling of receptor data with mathematical metabolite correction. Eur J Nucl Med 1996;23(5):539–45.

    Article  PubMed  CAS  Google Scholar 

  186. Huang S-C, Phelps ME, Hoffman EJ, Kuhl DE. A theoretical study of quantitative flow measurements with constant infusion of short-lived isotopes. Phys Med Biol 1979;24:1151–61.

    Article  PubMed  CAS  Google Scholar 

  187. Huang S-C, Phelps ME, Hoffman EJ, Kuhl DE. Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metab 1981;1:391–401.

    PubMed  CAS  Google Scholar 

  188. Lammertsma AA, Jones T, Frackowiak RSJ, Lenzi G-L. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilization using oxygen-15. J Comput Assist Tomogr 1981;5:544–50.

    PubMed  CAS  Google Scholar 

  189. Lammertsma AA, Heather JD, Jones T, Frackowiak RSJ, Lenzi G-L. A statistical study of the steady state technique for measuring regional cerebral blood flow and oxygen utilization using 15O. J Comput Assist Tomogr 1982;6:566–73.

    PubMed  CAS  Google Scholar 

  190. Brownell G, Kearfott K, Kairentoi A, Elmaleh D, Alpert N, Correia J, et al. Quantitation of regional cerebral glucose metabolism. J Comput Assist Tomogr 1983;7:919.

    PubMed  CAS  Google Scholar 

  191. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss W-D. Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: A critical appraisal of optimization procedures. J Cereb Blood Flow Metab 1985;5:115–25.

    PubMed  CAS  Google Scholar 

  192. Huang S-C, Feng D, Phelps ME. Model dependency and estimation reliability in measurement of cerebral oxygen utilization rate with oxygen-15 and dynamic positron emission tomography. J Cereb Blood Flow Metab 1986;6:105–19.

    PubMed  CAS  Google Scholar 

  193. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986;6:536–45.

    PubMed  CAS  Google Scholar 

  194. Jagust WJ, Budinger TF, Huesman RH, Friedland RP, Mazoyer BM, Knittel BL. Methodologic factors affecting PET measurements of cerebral glucose metabolism. J Nucl Med 1986;27:1358–61.

    PubMed  CAS  Google Scholar 

  195. Senda M, Buxton RB, Alpert NM, Correia JA, Mackay BC, Weise SB, et al. The 15O steady-state method: correction for variation in arterial concentration. J Cereb Blood Flow Metab 1988;8:681–90.

    PubMed  CAS  Google Scholar 

  196. Millet P, Delforge J, Pappata S, Syrota A, Cinotti L. Error analysis on parameter estimates in the ligand-receptor model — application to parameter imaging using PET data. Phys Med Biol 1996;41(12):2739–56.

    Article  PubMed  CAS  Google Scholar 

  197. Lammertsma AA, Cunningham VJ, Deiber MP, Heather JD, Bloomfield PM, Nutt J, et al. Combination of dynamic and integral methods for generating reproducible functional CBF images. J Cereb Blood Flow Metab 1990;10:675–86.

    PubMed  CAS  Google Scholar 

  198. Mazoyer BM, Huesman RH, Budinger TF, Knittel BL. Dynamic PET data analysis. J Comput Assist Tomogr 1986;10(4):645–53.

    PubMed  CAS  Google Scholar 

  199. Jovkar S, Evans AC, Diksic M, Nakai H, Yamamoto YL. Minimisation of parameter estimation errors in dynamic PET: choice of scanning schedules. Phys Med Biol 1989;34(7):895–908.

    Article  PubMed  CAS  Google Scholar 

  200. Kanno I, Iida H, Miura S, Murakami M. Optimal scan time of oxygen-15-labeled water injection method for measurement of cerebral blood flow. J Nucl Med 1991;32:1931–4.

    PubMed  CAS  Google Scholar 

  201. Hoshon K, Feng DG, Hawkins RA, Meikle S, Fulham MJ, Li XJ. Optimized sampling and parameter estimation for quantification in whole-body PET. IEEE Trans Biomed Eng 1996;43(10):1021–8.

    Article  CAS  Google Scholar 

  202. Fox PT, Mintun MA, Raichle ME, Herscovitch P. A noninvasive approach to quantitative functional brain mapping with H2 15O and positron emission tomography. J Cereb Blood Flow Metab 1984;4:329–33.

    PubMed  CAS  Google Scholar 

  203. Mazziotta JC, Huang SC, Phelps ME, Carson RE, MacDonald NS, Mahoney K. A noninvasive positron computed tomography technique using oxygen-15-labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab 1985;5(1):70–8.

    PubMed  CAS  Google Scholar 

  204. Carson RE. PET physiological measurements using constant infusion. Nucl Med Biol 2000;27(7):657-860.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Carson, R.E. (2005). Tracer Kinetic Modeling in PET. In: Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London. https://doi.org/10.1007/1-84628-007-9_6

Download citation

  • DOI: https://doi.org/10.1007/1-84628-007-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-798-8

  • Online ISBN: 978-1-84628-007-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics