Skip to main content

P53 and other Cell Cycle Regulators

  • Chapter
Molecular Basis of Thyroid Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 122))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamasaki, L Role of the RB tumor suppressor in cancer In DA Franks (Edit) “Signal transduction in cancer”, Kluwer Academic Publishers, Boston 2003, pp 208–239.

    Google Scholar 

  2. Farid NR 2001 P53 mutations in thyroid carcinoma: Tidings from an old foe J. Endocrinol. Invest. 24, 536–545.

    CAS  PubMed  Google Scholar 

  3. Vogelstein B, Lane D, Levine AB 2000 Surfing the p53 network Nature 408, 307–310.

    Article  CAS  PubMed  Google Scholar 

  4. De Bruin A, Wu L, Saavedra HI, Wilson P, Yang Y, Rosol TJ, Weinstein M, Robinson ML, Leone G 2003 Rb function in extraembryonic lineages suppresses apoptosis in the CNS of Rb-deficient mice Proc. Natl Acad. Sci. USA 100, 6546–6551.

    PubMed  Google Scholar 

  5. Tyner SD, Venkatachalam S, Choi J, Ones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Park SH, Thompson T, Harsenty G, Bradely A, Donehower LA 2002 p53 mutants mice that display early ageing-associated phenotypes Nature 415, 45–53.

    Article  CAS  PubMed  Google Scholar 

  6. Takaoka A, Hayakawa S, Yani H, Stoiber D, Negishsi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T 2003 Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence Nature (Lon.) 424, 516–523.

    CAS  Google Scholar 

  7. Kato S, Han S-Y, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C 2003 Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis Proc. Natl Acad, Sci USA 100, 8424–8429.

    CAS  Google Scholar 

  8. Samuels-Lev Y, O’Connor DL, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, Campargue I, Naumovski L, Crook T, Lu X 2001 ASPP proteins specifically stimulate the apoptotic function of p53 Mol.Cell 8, 781–794.

    CAS  PubMed  Google Scholar 

  9. Li M, Chen D, Shiloh A, Luo J, Nikolaev A, Qin J, Gu W 2002 Deubiqmnation of p53 by HAUSP is an important pathway for p53 stabilization Nature 416, 648–653.

    CAS  PubMed  Google Scholar 

  10. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT 1999 SUMO-1 modification activates the transcriptional response of p53 EMBO J 18, 6455–6461.

    Article  CAS  PubMed  Google Scholar 

  11. Buschmann T, Lerner D, Lee CG, Ronai Z 2001 The Mdm-2 amino-terminus is required for the MDm2 binding and SUMO-1 modification by E2 SUMO-1 conjugating enzyme ubc9 J. Biol. Chem. 276, 40389–40395.

    Article  CAS  PubMed  Google Scholar 

  12. Yoko O, Shohei K, Toshiyuki O, Yuko I, Toshiaki S, Keiji T, Norihisa M, Yukiko G 2002 Akt enhances mdm2-mediated ubiquination and degradation of p53 J. Biol. Cham. 277, 21843–21850.

    Google Scholar 

  13. Schon O, Friedler A, Bycroft M, Freund S, Fersht A2002 Molecular mechanisms of the interaction between MDM2 and P53 J. Mol. Biol. 323, 491–501.

    Article  CAS  PubMed  Google Scholar 

  14. Tao W, Levine AJ 1999 P19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2 Proc. Natl. Acad. Sci.USA 96, 69378–6941.

    Google Scholar 

  15. Kamjo T, Weber JD, Zambetti G, Zindy F, Rouissel, Sherr CJ 1998 Functional and physical interactions at the ARF tumor suppressor with p53 and Mdm2 Proc. Natl Acad. Sci.USA 95, 8292–8297

    Google Scholar 

  16. Xirodimas DP, Chisholm J, Desterro JM, Lane DP, Hay RT 2002 P14ARF promotes the accumulation of SUMO-1 conjugated (H) Mdm2 FEBS Lett. 528, 207–211.

    Article  CAS  PubMed  Google Scholar 

  17. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ 2001 Regulation of receptor fate by ubiquination of activated beta-2 adrenergic receptor and beta-arrestin Science 294, 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  18. Girnita L, Girnita A, Larsson O 2003 Mdm2-dependent ubiquination and degradation of the insulin-like growth factor 1 receptor Pro. Natl Acad. Sci. USA 100, 8247–8252.

    CAS  Google Scholar 

  19. Daujat S, Neel H, Piette J 2001 MDM2: life without p53 Trends Genet 17, 459–464.

    CAS  Google Scholar 

  20. Lane D 2001 How cells choose to die Nature 414, 25–27.

    Article  CAS  PubMed  Google Scholar 

  21. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks, T 2002 p63 and p73 are required for p53-depedent apoptosis in response to DNA damage Nature 416, 560–564.

    Article  CAS  PubMed  Google Scholar 

  22. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L 2003 PUMA mediates the apoptotic response to p53 in colorectal cancer cells Proc. Natl. Acad. Sci. USA 100, 1931–1936

    CAS  PubMed  Google Scholar 

  23. Yuan X-M, Li W, Dalen H, Lotem J, Kama R, Sachs R, Brunk UT 2002 Lysosomal destabilization in p53-induced apoptosis Proc. Natl. Acad. Sci. USA 99, 6286–6291.

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matusi K, Takei Y, Nakamura Y 2000 A ribonucleotide reductase gene is involved in a p53 cell-cycle checkpoint for DNA damage Nature 404, 42–48.

    CAS  PubMed  Google Scholar 

  25. Hendrix MJ 2000 De-mystifying the mechanisms(s) of maspin Nat. Med 6, 374–376.

    Article  CAS  PubMed  Google Scholar 

  26. Farid NR, Shi Y, Zou M 1994 Molecular basis of thyroid cancer Endocr Rev.5, 202–232.

    Google Scholar 

  27. Shahedian B, Shi Y, Zou M, Farid NR 2001 Thyroid carcinoma is characterized by genomic insability: evidence from p53 mutations Mol. Gene. Metab 72, 155–163.

    CAS  Google Scholar 

  28. Boltze C, Roessener A, Landt O, Szibor R, Peters B, Schneider-Stock R 2002 Homozygous praline at codon 72 of p53 as a potential risk factor favoring the development of undifferentiated thyroid carcinoma In. J. Oncol. 21, 1151–1154

    CAS  Google Scholar 

  29. Rodin SI, Rodin AS 1998 Strand asymmetry of CpG transition as indicator of G1 phase-dependent origin of multiple p53 mutations in stem cell Proc. Natl. Acad. Sci. USA 95, 11927–11932.

    Article  CAS  PubMed  Google Scholar 

  30. Moretti F, Farsetti A, Soddu S, Misiti S, Crescenzi M, Filetti S, Andreoli M, Sacchi A, Ponecorvi A 1997 p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells Oncogene 14, 729–740.

    Article  CAS  PubMed  Google Scholar 

  31. Gamble SC, Cook MC, Riches AC, Herceg Z, Bryant PE, Arrand JE 1999 p53 mutations in tumors derived from irradiated human thyroid epithelial cells Mutat. Res 425, 231–238

    CAS  PubMed  Google Scholar 

  32. Bruner SD, Nor,man DPG, Verdine GL 2000 Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA Nature 403, 859–866.

    CAS  PubMed  Google Scholar 

  33. Asher G, Lotem J, Kama R, Sachs L, Shaul Y 2002 NQ01 stabilizes p53 through a distinct mechanism Proc. Natl. Acad. Sci. USA 99, 3099–3104.

    CAS  PubMed  Google Scholar 

  34. Colin IM, Nava E, Toussaint D, Maiter DM, vanDenhove MF, Luschcr TF, Ketelslegers JM, Denef JF, Jameson JL 1995 Expression of nitric oxide synthase isoforms in the thyroid gland: evidence for a role of nitric oxide in vascular control during goiter formation Endocrinology 136, 5283–5290.

    Article  CAS  PubMed  Google Scholar 

  35. Patel A, Fenton C, Terrell R, Powers PA, Dinauer C, Tuttle RM, Francis GL 2002 Nitrotyrosine, inducible nitric acid oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) are increased in thyroid tumors from children and adolescents J. Endocrinol. Invest. 25, 675–683.

    CAS  PubMed  Google Scholar 

  36. Kasai K, Hattori Y, Nakanishi N, Manaka K, Banba N, Motohashi S, Shimoda S1995 Regulation by inducible nitric oxide production by cytokines in human thyrocytes in culture Endocrinology 136, 4261–4270.

    Article  CAS  PubMed  Google Scholar 

  37. Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, Shields PG, Ham AJ, Swenberg JA, Marrogi AJ, Harris CC 2000 Increased p53 mutation load on non-cancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease Cancer Res. 60, 3333–3337.

    CAS  PubMed  Google Scholar 

  38. Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS 2002 Regional analysis of p53 mutations in rheumatoid arthritis synovium Proc. Natl. Acad. Sci. USA 99, 10025–10030.

    Article  CAS  PubMed  Google Scholar 

  39. Kim DW, Hwang JH, Suh JM, Kim H, Song JH, Hwang ES, Hwang IY, Park KIC, Chung HK, Kim JM, Park J, Hammings BA, Shong M 2003 RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase phosphorylates and activated phosphoinositide-dependent kinase 1 (PDK1): an alternative phosphoatidylinositol 3-kinase-indepenedent pathway to activate PDK1 Mol. Endocrinol. 17, 1382–1394

    CAS  PubMed  Google Scholar 

  40. Dobashi Y, Sugimura H, Sakamoto A, Mernyei M, Mori, M, Oyama T, Machinami R 1994. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinoma Diag Mol Pathol 3, 9–14.

    CAS  Google Scholar 

  41. Pilotti S, Collini P, Del Bo R, Catteretti G, Pierotti MA, Rilke F1994 A novel panel of antibodies that segregates immunocytochemically poorly differentiated carcinoma from undifferentiated carcinoma of the thyroid gland Am.J. Surg. Pathol 21, 1466–1473.

    Google Scholar 

  42. Zou M, Shi Y, al-Sediary S, Hussian SS, Farid NR 1995 The expression of the MDM2 gene, a p53 binding protein, in thyroid carcinogenesis Cancer 76:314–318.

    CAS  PubMed  Google Scholar 

  43. Shi Y, Zou M, Varkondi E, Nagy A, Kozma L, Farid NR 2001 Cyclin D1 in thyroid carcinomas Thyroid 11, 709–710.

    Article  CAS  PubMed  Google Scholar 

  44. Jennings T, Bratslavsky G, Gerasimov G, Troshina K, Bronstein M, Dedov I, Alexandrova G, Figge J 1995 nuclear accumulation of MDM2 protein in well-differentiated papillary thyroid carcinoma Exp. Mol. Pathol. 62, 199–206.

    Article  CAS  PubMed  Google Scholar 

  45. Park KY, Koh JM, Park HJ, Gong G, Hong SJ, Ahn IM1998 Prevalence of Gs alpha, ras, p53 mutations and ret/PTC rearrangement in differentiated thyroid tumors in a Korean population Clin.Endocrinol.(Oxf) 49, 317–323.

    Article  CAS  Google Scholar 

  46. Brugarolas J, Moberg K, Boyd SD, Taya Y Jacks T, Lees JA 1999 Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after γ-irradiation Proc. Natl. Acad. Sci. USA 96, 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  47. Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P 2001 deletion of the p27Kip1 gene restores normal development in cyclin D1-defiecent mice Proc. Natl. Acad. Sci. USA 98, 194–199

    CAS  PubMed  Google Scholar 

  48. Farid NR 1996 Molecular pathogenesis of thyroid carcinoma: the significance of oncogenes, tumor suppressor genes and genomic instability Exp. Clin. Endocrinol. Diab 104 (Suppl 4), 1v–12.

    Google Scholar 

  49. Zedenius J, Larsson C, Wallin G, Backdahl M, Aspenblad U, Hoog A, Borresen AL, Auer G 1996 Alteration of p53 and expression of WAF1/p21 in human thyroid tumors Thyroid 6, 1–9.

    CAS  PubMed  Google Scholar 

  50. Ito Y, Kobyashi T, Takeda T, Komoike Y, Wakasugi E, Tamaki Y, Tsujimoto M, Matsuura N, Monden M 1996 Expression of p21 (WAF1/CIP1) protein in clinical thyroid tissues Br.J. Cancer 74, 1269–1274.

    CAS  PubMed  Google Scholar 

  51. Shi Y, Zou, M, Farid NR, A1-Sediary ST 1996 Evidence of gene deletion of P21 (WAF1/CIP1), a cyclin-dependent protein kinas inhibitor, in thyroid carcinoms Br.J. Cancer 74, 1336–1341.

    CAS  PubMed  Google Scholar 

  52. El-Diery WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B 1993 WAF1 a potential mediator of p53 tumor suppression Cell 75, 817–825.

    Google Scholar 

  53. Krempler A, Henry MD, Triplett AA, Wagner KU 2002 Targeted deletion of the Tsg 101 gene results in cell cycle arrest at the G1/S and p53-independent cell death J. Biol. Chem. 277, 43216–43223.

    Article  CAS  PubMed  Google Scholar 

  54. Oh, H, Mammucari C, Nenci A, Cabodi S, Cohen SN, Dotto GP 2002 Negative regulation of cell growth and differentiation by TSG101 through association with p21 (Cip1/WAF1) Proc, Natl. Acad. Sci. USA 99, 5430–5435.

    CAS  Google Scholar 

  55. Liu RT, Huang CC, You HL, Chou FF, Hu CC, Chao P, Chen CM, Cheng JT2002 Overexpression of tumor susceptibility gene TSG 101 in human papillary carcinomas Oncogene 21, 4830–4837.

    CAS  PubMed  Google Scholar 

  56. Zou M, Shi Y, Farid NR, A1-Sediary ST, Paterson MC 1999 FHIT gene abnormalities in both benign and malignant thyroid tumors Brit. Cancer J. 35, 467–472.

    CAS  Google Scholar 

  57. McIver B. Grebe SK, Wangle, Hay ID, Yokomizo A, Liu W, Goellner JR, Grant CS, Smith DI, Eberhardt NL 2000 FHIT and TSG101 in thyroid tumours: aberrant transcripts reflect rare abnormal RNA processing events of uncertain pathogenic or clinical significance Clin. Endocrinol. (Oxf) 52:, 49–757.

    Article  Google Scholar 

  58. Nevins JR 2001 The Rb/E2F pathway and cancer Hum. Mol. Genet 10, 699–703.

    Article  CAS  PubMed  Google Scholar 

  59. Lees JA, Weinberg RA 1999 Throwing monkey wrenches into the clock: New ways of treating cancer Proc. Natl. Acad. Sci. USA 96, 4221–4223.

    Article  CAS  PubMed  Google Scholar 

  60. Zou M, Shi Y, Farid NR 1994 Frequent inactivation of the retinoblastoma gene in human thyroid carcinoma Endocrine J. 2, 193–199.

    CAS  Google Scholar 

  61. Nikitin AY, Juarez-Perez MI, Li S, Huang L, Lee W-H 1999 RB-mediated suppression of spontaneous multiple neuroendocrine neoplasis and lung metastases in Rb+/- mice Proc. Natl. Acad. Sci. USA 96, 3916–3921.

    Article  CAS  PubMed  Google Scholar 

  62. Anwar F, Emond MJ, Schmidt RA, Hwang HC, Bronner MP 2000 Retinoblastoma expression in thyroid neoplasms Modem Pathology 13, 562–569.

    CAS  Google Scholar 

  63. Anwar F 2003 The phenotype of Huirthle and Warthin-like papillary thyroid carcinoma is distinct from classic papillary carcinoma as to the expression of retinoblastoma protein and E2F1 transcription factor Appl. Immunohistochem. Mio. Morphol. 11, 20–27.

    CAS  Google Scholar 

  64. Khoo M L, Beasley NJ, Ezzat S, Freeman JL, Asa SL 2002 Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma J. Clin. Endocrinol. Metab. 87, 1814–1818.

    CAS  PubMed  Google Scholar 

  65. Resnick MB, Schacter P, Finkelstein Y, Kellner Y, Cohen O Immunohistochemical analysis of p27/kip1 expression in thyroid carcinoma Mod Pathol 11, 735–739.

    Google Scholar 

  66. Wang S, Wu J, Savas L, Patwardhan N, Khan A 1998 The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis Hum. Pathol. 29, 1304–1309.

    Article  CAS  PubMed  Google Scholar 

  67. Maynes L, Hutzler MJ, Patwardhan NA, Wang S, Khan A 2000 Cell cycle regulatory protein p27 (kip), cyclins D1 and E and proliferative activity in oncocytic (Hurthle cell) lesions of the thyroid Endocr. Pathol 11, 331–340.

    Article  CAS  PubMed  Google Scholar 

  68. Baldassarre G, Belletti B, Bruni P, Boccia A, Trapasso F, Pentimalli F, Barone MV, Chiappetta G, Vento MT, Spieza S, Fusco A, Viglietto G 1999 Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells J. Clin. Inves. 104, 865–874.

    CAS  Google Scholar 

  69. Tung WS, Shevlin DW, Bartsch D, Norton JA, Wells SA Jr Goodfellow PJ 1996 Infrequent CDKN2 mutations in human differentiated thyroid cancers Mol.Carinog. 15, 5–10.

    CAS  Google Scholar 

  70. Jones CJ, Shaw JJ, Wylie FS, Gaillard N, Schlumberger M, Wynford-Thomas D 1996 High frequency deletion of the tumor suppressor gene P16INK4a (MTS1)in human thyroid carcinoma cell lines Mol.Cell.Endocrinol 116, 115–119.

    Article  CAS  PubMed  Google Scholar 

  71. Schulte KM, Stuadt S, Niederacher D, Finken-Eigen M, Kohrer K, Goretski PE, Roher HD 1998 Rare loss of heterozygosity of the MTS1 and MTS2 tumor suppressor genes in differentiated human thyroid cancer Horm. Metab. Res. 30, 549–554.

    CAS  PubMed  Google Scholar 

  72. Elisei R, Shiohara M, Koeffler HP, Fagin JA 1998 Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p 15INK4b and p 16INK4b in human thyroid carcinoma cell lines and primary thyroid carcinomas Cancer 83, 2185–2193.

    Article  CAS  PubMed  Google Scholar 

  73. Schagdarsurenign U, Gimm O, Hoang-Vu C, Draslle H, Pfiefer GP, Dammann R 2002 Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma Cancer Res. 62, 3698–3701.

    Google Scholar 

  74. Muller H, Lukas J, Schneider A, Warthog P, Barter J, Eilers M, Strauss M 1994 Cyclin D1 expression is regulated by the retinoblastoma protein Proc. Natl. Acad. Sci. USA 91. 2945–2949.

    CAS  PubMed  Google Scholar 

  75. Zou M, Shi Y, Farid NR, Al-Sediary ST 1998 Inverse association between cyclin D1 overexpression and retinoblastoma gene mutations in thyroid carcinoma Endocrine 8, 61–64.

    Article  CAS  PubMed  Google Scholar 

  76. Khoo ML, Ezzat S, Freeman JL, Asa SL2002 Cyclin D1 protein overexpression predicts metastatic behaqvior in thyroid papillary microcarcinoma but is not associated with gene amplification J. Clin. Endocrinol. Metab. 87, 1810–1813.

    CAS  PubMed  Google Scholar 

  77. Goto A, Sakamoto A, Machinami R2001 An immunochemical analysis of cyclin D1, p53 and p21 waf1/cip proteinin tumirs originating from the follicular epithelium of the thyroid cell Pathol. Res. Pract. 197, 217–222.

    Article  CAS  PubMed  Google Scholar 

  78. Basolo F, Caligo MA, Pinchera A, Fedeli F, Baldanzi A, Miccoli P, Iacconi P, Fontanini, G, Pacini F 2000 Cyclin D1 overexpression in thyroid carcinomas: relation With clinco-pathological parameters, retinoblastoma gene product and Ki671abeling index Thyroid 10, 741–746.

    CAS  PubMed  Google Scholar 

  79. Muro-Cacho CA, Holt T, Klotch D, Mora L, Livingston S, Futran N1999 Cyclin Dl expression as a prognostic parameter in papillary carcinoma of the thyroid Otolaryngol. Head Neck Surg. 120, 200–207.

    CAS  PubMed  Google Scholar 

  80. Saiz AD, Olvera M, Rezk S, Florentine BA, McCourty A, Brynes RK 2002 Immunobiolgical expression of cyclin D1, E2F-1 and Ki-67 in benign and malignant thyroid lesions J. Pathol. 198, 157–162.

    Article  CAS  PubMed  Google Scholar 

  81. Hwang JH, Kom DW, Suh, JM, Kim H, Song JH, Hwang ES, Park KC, Chung HK, Kim JM, Lee T-H, Yu D-Y, Shong M 2003 Activatiob of signal transducer and activator of transcription 3 by oncogenic RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase: Roles of specific gene regulation and cellular transformatiom Mol. Endocrinol. 17, 1155–1166.

    Article  CAS  PubMed  Google Scholar 

  82. Rudolph B, Saffrich R, Zwicker J, Henglein D, Muller R, Ansorge W, Eilers M 1996 Activation of cyclin-dependent kinases by Myc mediates induction of cyclin A, but not apoptosis EMBO J. 15, 3065–3067.

    CAS  PubMed  Google Scholar 

  83. Rodriguez-Puebla ML. Robles AI, Conti CJ 1999 ras activity and cyclin D1 expression: an essential mechanism of mouse skin tumor development Mol. Carcinog. 24, 1–6.

    Article  CAS  PubMed  Google Scholar 

  84. Volante M, Croce S, Pecchioni C, Papotti M 2002 E2F transcription factor is over expressed in oxyphilic thyroid tumors Mod. Pathol 15, 1038–1043.

    Article  PubMed  Google Scholar 

  85. Nygard M, Wahlsrtom GM, Gustafsson MV, Tokumoto YM, Bondesson M2003 Hormone-dependent repression of the E2F-1 gene by thyroid hormone receptors Mol. Endocrinol. 17, 79–92.

    Article  CAS  PubMed  Google Scholar 

  86. Ito Y, Yoshida H, Nakano K, Takamura Y, Kobayashi K, Yokozawa T, Matsuka F, Matsuura N, Kuma K, Miyauchi A 2002 expression of G2-M modulators in thyroid neoplasms: correlation of cyclin A,B1 and cdc2 with differentiation Pathol. Res. Pract. 198, 397–402.

    CAS  PubMed  Google Scholar 

  87. ItoY, Yoshida H, Uruno T, Nakano K, Takamuar Y, Mia A, Kobayashi K, Yokozawa T, Matsuzuka F, Kuma K, Miyauchi A 2003 Decreased expression of cyclin G2 is significantly linked to the malignant transformation of papillary carcinoma of the thyroid Anticancer Res. 23, 2335–2338.

    Google Scholar 

  88. Qi J-S, Desai-Yajanik V, Yaun Y Samuels HH 1997 Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated suppression Mol. Cell. Biol. 17, 7195–7207.

    CAS  PubMed  Google Scholar 

  89. Bhat MK, Yu CI, Zhan Q, Hayashi Y, Seth P, Cheng SY 1997 Tumor suppressor p53 is a negative regulator in thyroid hormone receptor signalling pathway J. Biol. Chem 272, 28989–28993.

    CAS  PubMed  Google Scholar 

  90. Qi J-S, Yaun Y, Desia-Yajanik V, Samuels HH1997 Regulation of the mdm2 oncogene by thyroid hormone receptor Mol. Cell. Biol. 19, 864–872

    Google Scholar 

  91. Frisk T, Foukakis t, Dwight T, Lunderg J, Hoog A, Wallis G, Eng C, Zedenius G, Larsson C 2002 Silencing of PTEN tumor-suppressor gene in anaplastic thyroid cancer Genes Chromosomes Cancer 35, 74–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Farid, N.R. (2005). P53 and other Cell Cycle Regulators. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics