Skip to main content

Basis and Importance of SRC as a Target in Cancer

  • Chapter
Molecular Targeting and Signal Transduction

Part of the book series: Cancer Treatment and Research ((CTAR,volume 119))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stehelin D, Varmus HE, Bishop JM, Vogt PK. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 1976;260(5547):170–3.

    Article  CAS  PubMed  Google Scholar 

  2. Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 1911;13:397–411.

    Article  PubMed  Google Scholar 

  3. Bishop JM, Baker B, Fujita D, McCombe P, Sheiness D, Smith K, et al. Genesis of a virus-transforming gene. Natl Cancer Inst Monogr 1978(48):219–23.

    Google Scholar 

  4. Parker RC, Varmus HE, Bishop JM. Cellular homologue (c-src) of the transforming gene of Rous sarcoma virus: isolation, mapping, and transcriptional analysis of c-src and flanking regions. Proc Natl Acad Sci U S A 1981;78(9):5842–6.

    Article  CAS  PubMed  Google Scholar 

  5. Purchio AF, Erikson E, Brugge JS, Erikson RL. Identification of a polypeptide encoded by the avian sarcoma virus src gene. Proc Natl Acad Sci U S A 1978;75(3):1567–71.

    Article  CAS  PubMed  Google Scholar 

  6. Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A 1978;75(4):2021–4.

    Article  CAS  PubMed  Google Scholar 

  7. Brugge JS, Erikson RL. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 1977;269(5626):346–8.

    Article  CAS  PubMed  Google Scholar 

  8. Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 1978;15(2):561–72.

    Article  CAS  PubMed  Google Scholar 

  9. Levinson AD, Oppermann H, Varmus HE, Bishop JM. The purified product of the transforming gene of avian sarcoma virus phosphorylates tyrosine. J Biol Chem 1980;255(24):11973–80.

    CAS  PubMed  Google Scholar 

  10. Varmus H, Bishop JM. Biochemical mechanisms of oncogene activity: proteins encoded by oncogenes. Introduction. Cancer Surv 1986;5(2):153–8.

    CAS  PubMed  Google Scholar 

  11. Varmus H, Hirai H, Morgan D, Kaplan J, Bishop JM. Function, location, and regulation of the src protein-tyrosine kinase. Princess Takamatsu Symp 1989;20:63–70.

    CAS  PubMed  Google Scholar 

  12. Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997;13:513–609.

    Article  CAS  PubMed  Google Scholar 

  13. Boerner RJ, Kassel DB, Barker SC, Ellis B, DeLacy P, Knight WB. Correlation of the phosphorylation states of pp60c-src with tyrosine kinase activity: the intramolecular pY530-SH2 complex retains significant activity if Y419 is phosphorylated. Biochemistry 1996;35(29):9519–25.

    Article  CAS  PubMed  Google Scholar 

  14. Cartwright CA, Kamps MP, Meisler AI, Pipas JM, Eckhart W. pp60c-src activation in human colon carcinoma. J Clin Invest 1989;83(6):2025–33.

    Article  CAS  PubMed  Google Scholar 

  15. Jun HS, Yoon JW. The role of viruses in Type I diabetes: two distinct cellular and molecular pathogenic mechanisms of virus-induced diabetes in animals. Diabetologia 2001;44(3):271–285.

    Article  CAS  PubMed  Google Scholar 

  16. Bellagamba C, Hubaishy I, Bjorge JD, Fitzpatrick SL, Fujita DJ, Waisman DM. Tyrosine phosphorylation of annexin II tetramer is stimulated by membrane binding. J Biol Chem 1997;272(6):3195–9.

    Article  CAS  PubMed  Google Scholar 

  17. Brown MT, Andrade J, Radhakrishna H, Donaldson JG, Cooper JA, Randazzo PA. ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol Cell Biol 1998;18(12):7038–51.

    CAS  PubMed  Google Scholar 

  18. Randazzo PA, Andrade J, Miura K, Brown MT, Long YQ, Stauffer S, et al. The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton [see comments]. Proc Natl Acad Sci U S A 2000;97(8):4011–6.

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996;271(46):29182–90.

    Article  CAS  PubMed  Google Scholar 

  20. Huang RP, Hossain MZ, Huang R, Gano J, Fan Y, Boynton AL. Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. International Journal of Cancer 2001;92(1):130–138.

    Article  CAS  Google Scholar 

  21. Lau AF, Kurata WE, Kanemitsu MY, Loo LW, Warn-Cramer BJ, Eckhart W, et al. Regulation of connexin 43 function by activated tyrosine protein kinases. J Bioenerg Biomembr 1996;28(4):359–68.

    Article  CAS  PubMed  Google Scholar 

  22. Okamura H, Resh MD. p80/85 cortactin associates with the Src SH2 domain and colocalizes with v-Src in transformed cells. J Biol Chem 1995;270(44):26613–8.

    Article  CAS  PubMed  Google Scholar 

  23. Agbotounou WK, Levitzki A, Jacquemin-Sablon A, Pierre J. Effects of tyrphostins on the activated c-src protein in NIH/3T3 cells. Mol Pharmacol 1994;45(5):922–31.

    CAS  PubMed  Google Scholar 

  24. Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr(845) and Tyr(1101) is associated with modulation of receptor function. Journal of Biological Chemistry 1999;274(12):8335–8343.

    Article  CAS  PubMed  Google Scholar 

  25. Seidel-Dugan C, Meyer BE, Thomas SM, Brugge JS. Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol Cell Biol 1992;12(4):1835–45.

    CAS  PubMed  Google Scholar 

  26. Schieffer B, Bernstein KE, Marrero MB. The role of tyrosine phosphorylation in angiotensin II mediated intracellular signaling and cell growth. J Mol Med 1996;74(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  27. Guan JL. Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol 1997;29(8–9):1085–96.

    Article  CAS  PubMed  Google Scholar 

  28. Alexandropoulos K, Baltimore D. Coordinate activation of c-Src by SH3-and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev 1996;10(11):1341–55.

    Article  CAS  Google Scholar 

  29. Brandt D, Gimona M, Hillmann M, Haller H, Mischak H. Protein kinase C induces actin reorganization via a Src-and Rho-dependent pathway. J Biol Chem 2002;277(23):20903–10.

    Article  CAS  PubMed  Google Scholar 

  30. Arthur WT, Petch LA, Burridge K. Itegrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr Biol 2000;10(12):719–22.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang-Sun G, Yang C, Viallet J, Feng G, Bergeron JJ, Posner BI. A 60-kilodalton protein in rat hepatoma cells overexpressing insulin receptor was tyrosine phosphorylated and associated with Syp, phophatidylinositol 3-kinase, and Grb2 in an insulin-dependent manner [see comments]. Endocrinology 1996;137(7):2649–58.

    Article  CAS  PubMed  Google Scholar 

  32. Turner CE. Paxillin. Int J Biochem Cell Biol 1998;30(9):955–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hildebrand JD, Schaller MD, Parsons JT. Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol Biol Cell 1995;6(6):637–47.

    CAS  PubMed  Google Scholar 

  34. Jabado N, Jauliac S, Pallier A, Bernard F, Fischer A, Hivroz C. Sam 68 association with p120GAP in CD4+ T cells is dependent on CD4 molecule expression. J Immunol 1998;161(6):2798–803.

    CAS  PubMed  Google Scholar 

  35. Weng Z, Thomas SM, Rickles RJ, Taylor JA, Brauer AW, Seidel-Dugan C, et al. Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol Cell Biol 1994;14(7):4509–21.

    CAS  PubMed  Google Scholar 

  36. van der Geer P, Wiley S, Gish GD, Pawson T. The Shc adaptor protein is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate protein-protein interactions. Curr Biol 1996;6(11):1435–44.

    Article  PubMed  Google Scholar 

  37. Schreiner SJ, Schiavone AP, Smithgall TE. Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain. Journal of Biological Chemistry 2002;277(47):45680–7.

    Article  CAS  PubMed  Google Scholar 

  38. Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 2000;19(56):6613–6626.

    Article  CAS  PubMed  Google Scholar 

  39. Berchtold S, Moriggl R, Gouilleux F, Silvennoinen O, Beisenherz C, Pfitzner E, et al. Cytokine receptor-independent, constitutively active variants of STAT5. J Biol Chem 1997;272(48):30237–43.

    Article  CAS  PubMed  Google Scholar 

  40. Chin H, Nakamura N, Kamiyama R, Miyasaka N, Ihle JN, Miura O. Physical and functional interactions between Stat5 and the tyrosine-phosphorylated receptors for erythropoietin and interleukin-3. Blood 1996;88(12):4415–25.

    CAS  PubMed  Google Scholar 

  41. Weng Z, Taylor JA, Turner CE, Brugge JS, Seidel-Dugan C. Detection of Src homology 3-binding proteins, including paxillin, in normal and v-Src-transformed Balb/c 3T3 cells. J Biol Chem 1993;268(20):14956–63.

    CAS  PubMed  Google Scholar 

  42. Reynolds AB, Daniel JM, Mo YY, Wu J, Zhang Z. The novel catenin p120cas binds classical cadherins and induces an unusual morphological phenotype in NIH3T3 fibroblasts. Exp Cell Res 1996;225(2):328–37.

    Article  CAS  PubMed  Google Scholar 

  43. Lampugnani MG, Corada M, Andriopoulou P, Esser S, Risau W, Dejana E. Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J Cell Sci 1997;110(Pt 17):2065–77.

    CAS  PubMed  Google Scholar 

  44. Cooper JA, Gould KL, Cartwright CA, Hunter T. Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 1986;231(4744):1431–4.

    Article  CAS  PubMed  Google Scholar 

  45. Kmiecik TE, Shalloway D. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 1987;49(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  46. Piwnica-Worms H, Saunders KB, Roberts TM, Smith AE, Cheng SH. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c-src. Cell 1987;49(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  47. Yamaguchi H, Hendrickson WA. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 1996;384(6608):484–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sicheri F, Kuriyan J. Structures of Src-family tyrosine kinases. Current Opinion in Structural Biology 1997;7(6):777–85.

    Article  CAS  PubMed  Google Scholar 

  49. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411(6835):355–65.

    Article  CAS  PubMed  Google Scholar 

  50. Smart JE, Oppermann H, Czernilofsky AP, Purchio AF, Erikson RL, Bishop JM. Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). Proc Natl Acad Sci U S A 1981;78(10):6013–7.

    Article  CAS  PubMed  Google Scholar 

  51. Chiang GG, Sefton BM. Phosphorylation of a Src kinase at the autophosphorylation site in the absence of Src kinase activity. Journal of Biological Chemistry 2000;275(9):6055–6058.

    Article  CAS  PubMed  Google Scholar 

  52. Sun G, Sharma AK, Budde RJ. Autophosphorylation of Src and Yes blocks their inactivation by Csk phosphorylation. Oncogene 1998;17(12):1587–95.

    Article  CAS  PubMed  Google Scholar 

  53. Shenoy S, Choi JK, Bagrodia S, Copeland TD, Maller JL, Shalloway D. Purified maturation promoting factor phosphorylates pp60c-src at the sites phosphorylated during fibroblast mitosis. Cell 1989;57(5):763–74.

    Article  CAS  PubMed  Google Scholar 

  54. Bagrodia S, Chackalaparampil I, Kmiecik TE, Shalloway D. Altered tyrosine 527 phosphorylation and mitotic activation of p60c-src. Nature 1991;349(6305):172–5.

    Article  CAS  PubMed  Google Scholar 

  55. Bagrodia S, Laudano AP, Shalloway D. Accessibility of the c-Src SH2-domain for binding is increased during mitosis. J Biol Chem 1994;269(14):10247–51.

    CAS  PubMed  Google Scholar 

  56. Chackalaparampil I, Bagrodia S, Shalloway D. Tyrosine dephosphorylation of pp60c-src is stimulated by a serine/threonine phosphatase inhibitor. Oncogene 1994;9(7):1947–55.

    CAS  PubMed  Google Scholar 

  57. Stover DR, Liebetanz J, Lydon NB. Cdc2-mediated modulation of pp60c-src activity. J Biol Chem 1994;269(43):26885–9.

    CAS  PubMed  Google Scholar 

  58. Bjorge JD, Jakymiw A, Fujita DJ. Selected glimpses into the activation and function of Src kinase. Oncogene 2000;19(49):5620–5635.

    Article  CAS  PubMed  Google Scholar 

  59. Superti-Furga G, Fumagalli, S., Koegl, M., Courtneidge, S.A., and Draetta, G. Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO Journal 1993;12:2625–2634.

    CAS  PubMed  Google Scholar 

  60. Fincham VJ, Unlu M, Brunton VG, Pitts JD, Wyke JA, Frame MC. Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. J Cell Biol 1996; 135(6 Pt 1):1551–64.

    Article  CAS  PubMed  Google Scholar 

  61. Fincham VJ, Frame MC. The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. Embo J 1998;17(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  62. Okamura H, Resh MD. Differential binding of pp60c-src and pp60v-src to cytoskeleton is mediated by SH2 and catalytic domains. Oncogene 1994;9(8):2293–303.

    CAS  PubMed  Google Scholar 

  63. Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 1990;62(3):481–92.

    Article  CAS  PubMed  Google Scholar 

  64. Alonso G, Koegl M, Mazurenko N, Courtneidge SA. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. J Biol Chem 1995;270(17):9840–8.

    Article  CAS  PubMed  Google Scholar 

  65. Cobb BS, Schaller MD, Leu TH, Parsons JT. Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol Cell Biol 1994;14(1):147–55.

    CAS  PubMed  Google Scholar 

  66. Schaller MD, Parsons JT. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 1994;6(5):705–10.

    Article  CAS  PubMed  Google Scholar 

  67. Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA, et al. Regulation of c-SRC activity and function by the adapter protein CAS. Mol Cell Biol 2000;20(16):5865–78.

    Article  CAS  PubMed  Google Scholar 

  68. Broome MA, Hunter T. The PDGF receptor phosphorylates Tyr 138 in the c-Src SH3 domain in vivo reducing peptide ligand binding. Oncogene 1997; 14(1):17–34.

    Article  CAS  PubMed  Google Scholar 

  69. Stover DR, Furet P, Lydon NB. Modulation of the SH2 binding specificity and kinase activity of Src by tyrosine phosphorylation within its SH2 domain. J Biol Chem 1996;271(21):12481–7.

    Article  CAS  PubMed  Google Scholar 

  70. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesionkinase,pp125FAK,directs SH2-dependent binding of pp60src. Mol Cell Biol 1994;14(3):1680–8.

    CAS  PubMed  Google Scholar 

  71. Eide BL, Turck CW, Escobedo JA. Identification of Tyr-397 as the primary site of tyrosine phosphorylation and pp60src association in the focal adhesion kinase, pp125FAK. Mol Cell Biol 1995;15(5):2819–27.

    CAS  PubMed  Google Scholar 

  72. Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 1995;15(2):954–63.

    CAS  PubMed  Google Scholar 

  73. Schlaepfer DD, Jones KC, Hunter T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src-and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 1998;18(5):2571–85.

    CAS  PubMed  Google Scholar 

  74. Richardson A, Malik RK, Hildebrand JD, Parsons JT. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol Cell Biol 1997;17(12):6906–14.

    CAS  PubMed  Google Scholar 

  75. Summy JM, Sudol M, Eck MJ, Monteiro AN, Gatesman A, Flynn DC. Title. Front Biosci 2003;8:S185–205.

    Article  Google Scholar 

  76. Schlessinger J. New roles for Src kinases in control of cell survival and angiogenesis. Cell 2000;100(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  77. Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 2002;1602(2):114–30.

    CAS  PubMed  Google Scholar 

  78. Ellis LM, Staley CA, Liu W, Fleming RY, Parikh NU, Bucana CD, et al. Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expressionvector specific for c-src. J Biol Chem 1998;273(2):1052–7.

    Article  CAS  PubMed  Google Scholar 

  79. Garcia R, Parikh NU, Saya H, Gallick GE. Effect of herbimycin A on growth and pp60c-src activity in human colon tumor cell lines. Oncogene 1991;6(11):1983–9.

    CAS  PubMed  Google Scholar 

  80. Biscardi JS, Belsches AP, Parsons SJ. Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Molecular Carcinogenesis 1998;21(4):261–272.

    Article  CAS  PubMed  Google Scholar 

  81. Licato LL, Brenner DA. Analysis of signaling protein kinases in human colon or colorectal carcinomas. Digestive Diseases & Sciences 1998;43(7):1454–1464.

    Article  CAS  Google Scholar 

  82. Coutinho P, Goodyear R, Legan PK, Richardson GP. Chick alpha-tectorin: molecular cloning and expression during embryogenesis. Hear Res 1999;130(1–2):62–74.

    Article  CAS  PubMed  Google Scholar 

  83. Lei S, Lu WY, Xiong ZG, Orser BA, Valenzuela CF, MacDonald JF. Platelet-derived growth factor receptor-induced feed-forward inhibition of excitatory transmission between hippocampal pyramidal neurons. J Biol Chem 1999;274(43):30617–23.

    Article  CAS  PubMed  Google Scholar 

  84. Schaller MD, Parsons JT. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 1995;15(5):2635–45.

    CAS  PubMed  Google Scholar 

  85. Ottenhoff-Kalff AE, Rijksen G, van, Beurden EA, Hennipman A, Michels AA, et al. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Research 1992;52(17):4773–4778.

    CAS  PubMed  Google Scholar 

  86. Verbeek BS, Vroom TM, Adriaansen-Slot SS, Ottenhoff-Kalff AE, Geertzema JG, Hennipman A, et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. Journal of Pathology 1996;180(4):383–388.

    Article  CAS  PubMed  Google Scholar 

  87. Takeshima E, Hamaguchi M, Watanabe T, Akiyama S, Kataoka M, Ohnishi Y, et al. Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells. Jpn J Cancer Res 1991;82(12):1428–35.

    CAS  PubMed  Google Scholar 

  88. Rosen N, Bolen JB, Schwartz AM, Cohen P, DeSeau V, Israel MA. Analysis of pp60c-src protein kinase activity in human tumor cell lines and tissues. Journal of Biological Chemistry 1986;261(29):13754–13759.

    CAS  PubMed  Google Scholar 

  89. Bolen JB, Rosen N, Israel MA. Increased pp60c-src tyrosyl kinase activity in human neuroblastomas is associated with amino-terminal tyrosine phosphorylation of the src gene product. Proc Natl Acad Sci U S A 1985;82(21):7275–9.

    Article  CAS  PubMed  Google Scholar 

  90. Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N. Activation of pp60c-src protein kinase activity in human colon carcinoma. Proceedings of the National Academy of Sciences of the United States of America 1987;84(8):2251–2255.

    CAS  Google Scholar 

  91. Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N. Analysis of pp60c-src in human colon carcinoma and normal human colon mucosal cells. Oncogene Research 1987;1(2):149–168.

    CAS  PubMed  Google Scholar 

  92. Cartwright CA, Meisler AI, Eckhart W. Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis. Proc Natl Acad Sci U S A 1990;87(2):558–62.

    Article  CAS  PubMed  Google Scholar 

  93. Talamonti MS, Roh MS, Curley SA, Gallick GE. Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. Journal of Clinical Investigation 1993;91(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  94. Termuhlen PM, Curley SA, Talamonti MS, Saboorian MH, Gallick GE. Site-specific differences in pp60c-src activity in human colorectal metastases. J Surg Res 1993;54(4):293–298.

    Article  CAS  PubMed  Google Scholar 

  95. Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Luhrs H, Friess H, et al. Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 1998;243(2):503–8.

    Article  CAS  PubMed  Google Scholar 

  96. Lynch SA, Brugge JS, Fromowitz F, Glantz L, Wang P, Caruso R, et al. Increased expression of the src proto-oncogene in hairy cell leukemia and a subgroup of B-cell lymphomas. Leukemia 1993;7(9):1416–22.

    CAS  PubMed  Google Scholar 

  97. Fanning P, Bulovas K, Saini KS, Libertino JA, Joyce AD, Summerhayes IC. Elevated expression of pp60c-src in low grade human bladder carcinoma. Cancer Research 1992;52(6):1457–1462.

    CAS  PubMed  Google Scholar 

  98. O’Shaughnessy J, Deseau V, Amini S, Rosen N, Bolen JB. Analysis of the c-src gene product structure, abundance, and protein kinase activity in human neuroblastoma and glioblastoma cells. Oncogene Res 1987;2(1):1–18.

    Google Scholar 

  99. Bjelfman C, Hedborg F, Johansson I, Nordenskjold M, Pahlman S. Expression of the neuronal form of pp60c-src in neuroblastoma in relation to clinical stage and prognosis. Cancer Res 1990;50(21):6908–14.

    CAS  PubMed  Google Scholar 

  100. Budde RJ, Ke S, Levin VA. Activity of pp60c-src in 60 different cell lines derived from human tumors. Cancer Biochemistry Biophysics 1994;14(3):171–175.

    CAS  PubMed  Google Scholar 

  101. Takenaka N, Mikoshiba K, Takamatsu K, Tsukada Y, Ohtani M, Toya S. Immunohistochemical detection of the gene product of Rous sarcoma virus in human brain tumors. Brain Research 1985;337(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  102. Bjelfman C, Meyerson G, Cartwright CA, Mellstrom K, Hammerling U, Pahlman S. Early activation of endogenous pp60src kinase activity during neuronal differentiation of cultured human neuroblastoma cells. Mol Cell Biol 1990;10(1):361–70.

    CAS  PubMed  Google Scholar 

  103. Cartwright CA, Coad CA, Egbert BM. Elevated c-Src tyrosine kinase activity in premalignant epithelia of ulcerative colitis. Journal of Clinical Investigation 1994;93(2):509–515.

    Article  CAS  PubMed  Google Scholar 

  104. Honda H, Oda H, Nakamoto T, Honda Z, Sakai R, Suzuki T, et al. Cardiovascular anomaly, impaired actinbundling and resistance to Src-induced transformation in mice lacking p130Cas [see comments]. Nat Genet 1998;19(4):361–5.

    Article  CAS  PubMed  Google Scholar 

  105. Brumell JH, Burkhardt AL, Bolen JB, Grinstein S. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem 1996;271(3):1455–61.

    Article  CAS  PubMed  Google Scholar 

  106. Iravani S, Mao W, Fu L, Karl R, Yeatman T, Jove R, et al. Elevated c-Src protein expression is an early event in colonic neoplasia. Laboratory Investigation 1998;78(3):365–371.

    CAS  PubMed  Google Scholar 

  107. Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 2002;94(2):344–51.

    Article  PubMed  CAS  Google Scholar 

  108. Parker RC, Mardon G, Lebo RV, Varmus HE, Bishop JM. Isolation of duplicated human c-src genes located on chromosomes 1 and 20. Mol Cell Biol 1985;5(4):831–8.

    CAS  PubMed  Google Scholar 

  109. Sakaguchi AY, Mohandas T, Naylor SL. A human c-src gene resides on the proximal long arm of chromosome 20 (cen—q131). Genet Cytogenet 1985;18(2):123–9.

    Article  CAS  Google Scholar 

  110. Le Beau MM, Westbrook CA, Diaz MO, Rowley JD. c-src is consistently conserved in the chromosomal deletion (20q) observed in myeloid disorders. Proc Natl Acad Sci U S A 1985;82(19):6692–6.

    Article  PubMed  Google Scholar 

  111. Le Beau MM, Westbrook CA, Diaz MO, Rowley JD. Evidence for two distinct c-src loci on human chromosomes 1 and 20. Nature 1984;312(5989):70–1.

    Article  PubMed  Google Scholar 

  112. Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, et al. Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 1999;21(2):187–90.

    Article  CAS  PubMed  Google Scholar 

  113. Wang NM, Yeh KT, Tsai CH, Chen SJ, Chang JG. No evidence of correlation between mutation at codon 531 of src and the risk of colon cancer in Chinese. Cancer Lett 2000;150(2):201–4.

    Article  CAS  PubMed  Google Scholar 

  114. Daigo Y, Furukawa Y, Kawasoe T, Ishiguro H, Fujita M, Sugai S, et al. Absence of genetic alteration at codon 531 of the human c-src gene in 479 advanced colorectal cancers from Japanese and Caucasian patients. Cancer Research 1999;59(17):4222–4224.

    CAS  PubMed  Google Scholar 

  115. Nilbert M, Fernebro E. Lack of activating c-SRC mutations at codon 531 in rectal cancer. Cancer Genet Cytogenet 2000;121(1):94–5.

    Article  CAS  PubMed  Google Scholar 

  116. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src protooncogene leads to osteopetrosis in mice. Cell 1991;64(4):693–702.

    Article  CAS  PubMed  Google Scholar 

  117. Muthuswamy SK, Muller WJ. Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo. Oncogene 1995;11(9):1801–10.

    CAS  PubMed  Google Scholar 

  118. Staley CA, Parikh NU, Gallick GE. Decreased tumorigenicity of a human colon adenocarcinoma cell line by an antisense expression vector specific for c-Src. Cell Growth Differ 1997;8(3):269–74.

    CAS  PubMed  Google Scholar 

  119. Wiener JR, Nakano K, Kruzelock RP, Bucana CD, Bast RC, Jr., Gallick GE. Decreased Src tyrosine kinase activity inhibits malignant human ovarian cancer tumor growth in a nude mouse model [published erratum appears in Clin Cancer Res 1999 Oct;5(10):2980]. Clin Cancer Res 1999;5(8):2164–70.

    CAS  PubMed  Google Scholar 

  120. Guy CT, Muthuswamy SK, Cardiff RD, Soriano P, Muller WJ. Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes & Development 1994;8(1):23–32.

    Article  CAS  Google Scholar 

  121. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung LW. c-met protooncogene expression in benign and malignant human prostate tissues. JOURNAL OF UROLOGY 1995;154(1):293–298.

    Article  CAS  PubMed  Google Scholar 

  122. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT, et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol 1995;147(2):386–96.

    CAS  PubMed  Google Scholar 

  123. Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J, et al. Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 1997;15(25):3083–90.

    Article  CAS  PubMed  Google Scholar 

  124. Rahimi N, Hung W, Tremblay E, Saulnier R, Elliott B. c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. Journal of Biological Chemistry 1998;273(50):33714–33721.

    Article  CAS  PubMed  Google Scholar 

  125. Elliott BE, Hung WL, Boag AH, Tuck AB. The role of hepatocyte growth factor (scatter factor) in epithelial-mesenchymal transition and breast cancer. Can J Physiol Pharmacol 2002;80(2):91–102.

    Article  CAS  PubMed  Google Scholar 

  126. Kim SJ, Johnson M, Koterba K, Herynk MH, Uehara H, Gallick GE. Reduced c-Met Expression by an Adenovirus Expressing a c-Met Ribozyme Inhibits Tumorigenic Growth and Lymph Node Metastases of PC3-LN4 Prostate Tumor Cells in an Orthotopic Nude Mouse Model. Cancer Res 2003;in press.

    Google Scholar 

  127. Kitagawa D, Tanemura S, Ohata S, Shimizu N, Seo J, Nishitai G, et al. Activation of extracellular signal-regulated kinase by ultraviolet is mediated through Src-dependent epidermal growth factor receptor phosphorylation. Its implication in an anti-apoptotic function. J Biol Chem 2002;277(1):366–71.

    Article  CAS  PubMed  Google Scholar 

  128. Sato K, Sato A, Aoto M, Fukami Y. c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun 1995;215(3):1078–87.

    Article  CAS  PubMed  Google Scholar 

  129. Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 2002;277(28):24967–75.

    Article  CAS  PubMed  Google Scholar 

  130. Olayioye MA, Badache A, Daly JM, Hynes NE. An essential role for Src kinase in ErbB receptor signaling through the MAPK pathway, Experimental Cell Research 2001;267(1).

    Google Scholar 

  131. Park S, Liu X, Pawson T, Jove R. Activated Src tyrosine kinase phosphorylates Tyr-457 of bovine GTPase-activating protein (GAP) in vitro and the corresponding residue of rat GAP in vivo. J Biol Chem 1992;267(24):17194–200.

    CAS  PubMed  Google Scholar 

  132. Courtneidge SA. Role of Src in signal transduction pathways. Biochem Soc Trans 2002;30(2):11–7.

    Article  CAS  PubMed  Google Scholar 

  133. Conway AM, Rakhit S, Pyne S, Pyne NJ. Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxinsensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochemical Journal 1999;337(Pt 2):171–177.

    Article  CAS  PubMed  Google Scholar 

  134. Yamboliev IA, Chen J, Gerthoffer WT. PI 3-kinases and Src kinases regulate spreading and migration of cultured VSMCs. American Journal of Physiology-Cell Physiology 2001;281(2).

    Google Scholar 

  135. Newcomb LF, Mastick CC. Src family kinase-dependent phosphorylation of a 29-kDa caveolin — associated protein. Biochemical And Biophysical Research Communications 2002;290(5):1447–1453.

    Article  CAS  PubMed  Google Scholar 

  136. Furstoss O, Dorey K, Simon V, Barila D, Superti-Furga G, Roche S. c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. Embo J 2002;21(4):514–24.

    Article  CAS  PubMed  Google Scholar 

  137. Marx M, Warren SL, Madri JA. pp60(c-src) modulates microvascular endothelial phenotype and in vitro angiogenesis. Experimental and Molecular Pathology 2001;70(3).

    Google Scholar 

  138. Valentinis B, Morrione A, Peruzzi F, Prisco M, Reiss K, Baserga R. Anti-apoptotic signaling of the IGF-I receptor in fibroblasts following loss of matrix adhesion. Oncogene 1999;18(10):1827–1836.

    Article  CAS  PubMed  Google Scholar 

  139. Flossmann-Kast BB, Jehle PM, Hoeflich A, Adler G, Lutz, MP. Src stimulates insulin-like growth factor I (IGF-I)-dependent cell proliferation by increasing IGF-I receptor number in human pancreatic carcinoma cells. Cancer Research 1998;58(16):3551–3554.

    CAS  PubMed  Google Scholar 

  140. Tanno S, Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation upregulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. CANCER RESEARCH 2001;61(2):589–593.

    CAS  PubMed  Google Scholar 

  141. Abu-Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I. Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochemical Journal 2001;360(Pt 1):255–264.

    Article  CAS  PubMed  Google Scholar 

  142. Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 1995;375(6532):577–81.

    Article  CAS  PubMed  Google Scholar 

  143. Theurillat JP, Hainfellner J, Maddalena A, Weissenberger J, Aguzzi A. Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. American Journal of Pathology 1999;154(2):581–590.

    CAS  PubMed  Google Scholar 

  144. Fleming RY, Ellis LM, Parikh NU, Liu W, Staley CA, Gallick GE. Regulation of vascular endothelial growth factor expression in humancolon carcinoma cells by activity of src kinase. Surgery 1997;122(2):501–7.

    Article  CAS  PubMed  Google Scholar 

  145. Lu Z, Hornia A, Jiang YW, Zang Q, Ohno S, Foster DA. Tumor promotion by depleting cells of protein kinase C delta. Mol Cell Biol 1997;17(6):3418–28.

    CAS  PubMed  Google Scholar 

  146. Song JS, Swann PG, Szallasi Z, Blank U, Blumberg PM, Rivera J. Tyrosine phosphorylation-dependent and-independent associations of protein kinase C-delta with Src family kinases in the RBL-2H3 mast cell line: regulation of Src family kinase activity by protein kinase C-delta. Oncogene 1998;16(26):3357–68.

    Article  CAS  PubMed  Google Scholar 

  147. Miyazaki T, Neff L, Tanaka S, Horne WC, Baron R. Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 2003;160(5):709–18.

    Article  CAS  PubMed  Google Scholar 

  148. Yang WL, Iacono L, Tang WM, Chin KV. Novel function of the regulatory subunit of protein kinase A: regulation of cytochrome c oxidase activity and cytochrome c release. Biochemistry 1998;37(40):14175–80.

    Article  CAS  PubMed  Google Scholar 

  149. Tejedo JR, Ramirez R, Cahuana GM, Rincon P, Sobrino F, Bedoya FJ. Evidence for involvement of c-Src in the anti-apoptotic action of nitric oxide in serum-deprived RINm5F cells. Cell Signal 2001;13(11):809–17.

    Article  CAS  PubMed  Google Scholar 

  150. Webb BL, Jimenez E, Martin GS. v-Src generates a p53-independent apoptotic signal. Mol Cell Biol 2000;20(24):9271–80.

    Article  CAS  PubMed  Google Scholar 

  151. Karni R, Jove R, Levitzki A. Inhibition of pp60c-Src reduces Bcl-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. Oncogene 1999;18(33):4654–62.

    Article  CAS  PubMed  Google Scholar 

  152. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002;8(4):945–54.

    CAS  PubMed  Google Scholar 

  153. Zhang Y, Turkson J, Carter-Su C, Smithgall T, Levitzki A, Kraker A, et al. Activation of Stat3 in v-Src-transformed fibroblasts requires cooperation of Jak1 kinase activity. J Biol Chem 2000;275(32):24935–44.

    Article  CAS  PubMed  Google Scholar 

  154. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 1998;18(5):2545–52.

    CAS  PubMed  Google Scholar 

  155. Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ. Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 2002;21(55):8404–13.

    Article  CAS  PubMed  Google Scholar 

  156. Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 2002;21(46):7001–10.

    Article  CAS  PubMed  Google Scholar 

  157. Wang YZ, Wharton W, Garcia R, Kraker A, Jove R, Pledger WU. Activation of Stat3 preassembled with platelet-derived growth factor beta receptors requires Src kinase activity. Oncogene 2000;19(17):2075–2085.

    Article  CAS  PubMed  Google Scholar 

  158. Kaptein A, Paillard V, Saunders M. Dominant negative stat3 mutant inhibits interleukin-6-induced Jak-STAT signal transduction. Journal of Biological Chemistry 1996;271(11):5961–4.

    Article  CAS  PubMed  Google Scholar 

  159. Schaefer TS, Sanders LK, Park OK, Nathans D. Functional differences between Stat3alpha and Stat3beta. Molecular & Cellular Biology 1997;17(9):5307–16.

    CAS  Google Scholar 

  160. Smith PD, Crompton MR. Expression of v-src in mammary epithelial cells induces transcription via STAT3. Biochem J 1998;331(Pt 2):381–5.

    CAS  PubMed  Google Scholar 

  161. Schaefer LK, Wang S, Schaefer TS. c-Src activates the DNA binding and transcriptional activity of Stat3 molecules: serine 727 is not required for transcriptional activation under certain circumstances. Biochem Biophys Res Commun 1999;266(2):481–7.

    Article  CAS  PubMed  Google Scholar 

  162. Hung W, Elliott B. Co-operative effect of c-Src tyrosine kinase and Stat3 in activation of hepatocyte growth factor expression in mammary carcinoma cells. Journal of Biological Chemistry 2001;276(15):12395–403.

    Article  CAS  PubMed  Google Scholar 

  163. Windham TC, Parikh NU, Siwak DR, Summy JM, McConkey DJ, Kraker AJ, et al. Src activation regulates anoikis in human colon tumor cell lines. Oncogene 2002;21(51):7797–807.

    Article  CAS  PubMed  Google Scholar 

  164. Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. J Mol Biol 1999;285(2):713–25.

    Article  CAS  PubMed  Google Scholar 

  165. Eck MJ, Shoelson SE, Harrison SC. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 1993;362(6415):87–91.

    Article  CAS  PubMed  Google Scholar 

  166. Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997;385(6617):595–602.

    Article  CAS  PubMed  Google Scholar 

  167. Eck MJ, Atwell SK, Shoelson SE, Harrison SC. Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Nature 1994;368(6473):764–9.

    Article  CAS  PubMed  Google Scholar 

  168. Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM, et al. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure Fold Des 1999;7(6):651–61.

    Article  CAS  PubMed  Google Scholar 

  169. Showalter HD, Kraker AJ. Small molecule inhibitors of the platelet-derived growth factor receptor, the fibroblast growth factor receptor, and Src family tyrosine kinases. Pharmacol Ther 1997;76(1–3):55–71.

    Article  CAS  PubMed  Google Scholar 

  170. Dalgarno DC, Metcalf CAI, Shakespeare WC, Sawyer TK. Signal transduction drug-discovery: Targets, mechanisms and structure-based design. Current Opinion in Drug Discovery & Development. 2000;3:549–564.

    CAS  Google Scholar 

  171. Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Src inhibitors: genomics to therapeutics. Expert Opin Investig Drugs 2001;10(7):1327–44.

    Article  CAS  PubMed  Google Scholar 

  172. Showalter HD, Sercel AD, Leja BM, Wolfangel CD, Ambroso LA, Elliott WL, et al. Tyrosine kinase inhibitors. 6. Structure-activity relationships among N-and 3-substituted 2,2′-diselenobis (1H-indoles) for inhibition of protein tyrosine kinases and comparative in vitro and in vivo studies against selected sulfur congeners. J Med Chem 1997;40(4):413–26.

    Article  CAS  PubMed  Google Scholar 

  173. Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HD, Moore CW. Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol 2000;60(7):885–98.

    Article  CAS  PubMed  Google Scholar 

  174. Hamby JM, Connolly CJ, Schroeder MC, Winters RT, Showalter HD, Panek RL, et al. Structure-activity relationships for a novel series of pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. J Med Chem 1997;40(15):2296–303.

    Article  CAS  PubMed  Google Scholar 

  175. Boschelli DH, Wu Z, Klutchko SR, Showalter HD, Hamby JM, Lu GH, et al. Synthesis and tyrosine kinase inhibitory activity of a series of 2-amino-8H-pyrido[2,3-d]pyrimidines: identification of potent, selective platelet-derived growth factor receptor tyrosine kinase inhibitors. J Med Chem 1998;41(22):4365–77.

    Article  CAS  PubMed  Google Scholar 

  176. Klutchko SR, Hamby JM, Boschelli DH, Wu Z, Kraker AJ, Amar AM, et al. 2-Substituted aminopyrido[2,3-d]pyrimidin-7(8H)-ones. structure-activity relationships against selected tyrosine kinases and in vitro and in vivo anticancer activity. J Med Chem 1998;41(17):3276–92.

    Article  CAS  PubMed  Google Scholar 

  177. Moasser MM, Srethapakdi M, Sachar KS, Kraker AJ, Rosen N. Inhibition of Src kinases by a selective tyrosine kinase inhibitor causes mitotic arrest. Cancer Res 1999;59(24):6145–52.

    CAS  PubMed  Google Scholar 

  178. Blankley CJ, Doherty AM, Hamby JM, Panek RL, Schroeder MC, Showalter HDH, et al. Preparation of 6-aryl pyrido[2,3-d]pyrimidines and naphthyridines for inhibiting protein tyrosine kinase-mediated cellular proliferation. Chem. Abst. 1996;125(WO 9615128):114688k.

    Google Scholar 

  179. Thompson AM, Connolly CJ, Hamby JM, Boushelle S, Hartl BG, Amar AM, et al. 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridine-2,7-diamines and related 2-urea derivatives are potent and selective inhibitors of the FGF receptor-1 tyrosine kinase. J Med Chem 2000;43(22):4200–11.

    Article  CAS  PubMed  Google Scholar 

  180. Thompson AM, Rewcastle GW, Boushelle SL, Hartl BG, Kraker AJ, Lu GH, et al. Synthesis and structure-activity relationships of 7-substituted 3-(2, 6-dichlorophenyl)-1,6-naphthyridin-2(1H)-ones as selective inhibitors of pp60(c-src). J Med Chem 2000;43(16):3134–47.

    Article  CAS  PubMed  Google Scholar 

  181. Schroeder MC, Hamby JM, Connolly CJ, Grohar PJ, Winters RT, Barvian MR, et al. Soluble 2-substituted aminopyrido[2,3-d]pyrimidin-7-yl ureas. Structure-activity relationships against selected tyrosine kinases and exploration of in vitro and in vivo anticancer activity. Journal of Medicinal Chemistry 2001;44(12):1915–26.

    Article  CAS  PubMed  Google Scholar 

  182. Missbach M, Altmann E, Widler L, Susa M, Buchdunger E, Mett H, et al. Substituted 5,7-diphenyl-pyrrolo[2,3d]pyrimidines: potent inhibitors of the tyrosine kinase c-Src [In Process Citation]. Bioorg Med Chem Lett 2000;10(9):945–9.

    Article  CAS  PubMed  Google Scholar 

  183. Widler L, Green J, Missbach M, Susa M, Altmann E. 7-alkyl-and 7-cycloalkyl-5-aryl-pyrrolo[2,3-d]pyrimidines-potent inhibitors of the tyrosine kinase c-Src. Bioorganic & Med. Chem. Lett. 2001;11(6):849–852.

    Article  CAS  Google Scholar 

  184. Altmann E, Widler L, Missbach M. N(7)-substituted-5-aryl-pyrrolo[2,3-d]pyrimidines represent a versatile class of potent inhibitors of the tyrosine kinase c-Src. Mini Rev Med Chem 2002;2(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  185. Widler L, Green J, Missbach M, Susa M, Altmann E. 7-Alkyl-and 7-cycloalkyl-5-aryl-pyrrolo[2,3-d]pyrimidines-potent inhibitors of the tyrosine kinase c-Src. Bioorganic & Medicinal Chemistry Letters 2001;11(6):849–52.

    Article  CAS  Google Scholar 

  186. Levitzki A. SRC as a target for anti-cancer drugs. Anticancer Drug Des 1996;11(3):175–82.

    CAS  PubMed  Google Scholar 

  187. Levitzki A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol Therap 1999;82(2–3):231–239.

    Article  CAS  Google Scholar 

  188. Ramdas L, McMurray JS, Budde RJ. The degree of inhibition of protein tyrosine kinase activity by tyrphostin 23 and 25 is related to their instability. Cancer Res 1994;54(4):867–9.

    CAS  PubMed  Google Scholar 

  189. Ramdas L, Obeyesekere NU, McMurray JS, Gallick GE, Seifert WE, Jr., Budde RJ. A tyrphostin-derived inhibitor of protein tyrosine kinases: isolation and characterization. Arch Biochem Biophys 1995;323(2):237–42.

    Article  CAS  PubMed  Google Scholar 

  190. Hori H, Nagasawa H, Uto Y. Structure-based design of the antitumor 2-hydroxyarylidene-4-cyclopentene-l,3-dione TX-1123 as a protein tyrosine kinase inhibitor having low mitochondrial toxicity. Cell Mol Biol Lett 2003;8(2A):528–30.

    Google Scholar 

  191. Hori H, Nagasawa H, Ishibashi M, Uto Y, Hirata A, Saijo K, et al. TX-1123: an antitumor 2-hydroxyarylidene-4-cyclopentene-1,3-dione as a protein tyrosine kinase inhibitor having low mitochondrial toxicity. Bioorg Med Chem 2002;10(10):3257–65.

    Article  CAS  PubMed  Google Scholar 

  192. Tian G, Cory M, Smith AA, Knight WB. Structural determinants for potent, selective dual site inhibition of human pp60c-src by 4-anilinoquinazolines. Biochemistry 2001;40(24):7084–91.

    Article  CAS  PubMed  Google Scholar 

  193. Plummer MS, Holland DR, Shahripour A, Lunney EA, Fergus JH, Marks JS, et al. Design, synthesis, and cocrystal structure of a nonpeptide Src SH2 domain ligand. J Med Chem 1997;40(23):3719–25.

    Article  CAS  PubMed  Google Scholar 

  194. Plummer MS, Lunney EA, Para KS, Shahripour A, Stankovic CJ, Humblet C, et al. Design of peptidomimetic ligands for the pp60src SH2 domain. Bioorg Med Chem 1997;5(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  195. Kawahata N, Yang MG, Luke GP, Shakespeare WC, Sundaramoorthi R, Wang Y, et al. A novel phosphotyrosine mimetic 4′-carboxymethyloxy-3′-phosphonophenylalanine (Cpp): exploitation in the design of nonpeptide inhibitors of pp60(Src) SH2 domain. Bioorg Med Chem Lett 2001;11(17):2319–23.

    Article  CAS  PubMed  Google Scholar 

  196. Sawyer TK, Bohacek RS, Dalgarno DC, Eyermann CJ, Kawahata N, Metcalf CA, 3rd, et al. SRC homology-2 inhibitors: peptidomimetic and nonpeptide. Mini Rev Med Chem 2002;2(5):475–88.

    Article  CAS  PubMed  Google Scholar 

  197. Kovacs B, Liossis SNC, Gist ID, Tsokos GC. Crosslinking of Fas/CD95 suppresses the CD3-mediated signaling events in Jurkat T cells by inhibiting the association of the T-cell receptor zeta chain with src-protein tyrosine kinases and ZAP70. APOPTOSIS 1999;4(5):327–334.

    Article  CAS  PubMed  Google Scholar 

  198. Nimmanapalli R, O’Bryan E, Huang M, Bali P, Burnette PK, Loughran T, et al. Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2002;62(20):5761–9.

    CAS  PubMed  Google Scholar 

  199. Nimmanapalli R, Bhalla K. Mechanisms of resistance to imatinib mesylate in Bcr-Abl-positive leukemias. Current Opinion in Oncology 2002;14(6):616–20.

    Article  CAS  PubMed  Google Scholar 

  200. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Science 2003;94(1):15–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Levin, V.A. (2004). Basis and Importance of SRC as a Target in Cancer. In: Kumar, R. (eds) Molecular Targeting and Signal Transduction. Cancer Treatment and Research, vol 119. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7847-1_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7847-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7822-4

  • Online ISBN: 978-1-4020-7847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics