Skip to main content

Runx Protein Signaling in Human Cancers

  • Chapter
Molecular Targeting and Signal Transduction

Part of the book series: Cancer Treatment and Research ((CTAR,volume 119))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miyoshi, H. et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A 88, 10431–4 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation [see comments]. Cell 89, 747–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Li, Q.L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Canon, J. & Banerjee, U. Runt and Lozenge function in Drosophila development. Semin Cell Dev Biol 11, 327–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Q. et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87, 697–708 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Huang, G. et al. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. Embo J 20, 723–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Wheeler, J.C., Shigesada, K., Gergen, J.P. & Ito, Y. Mechanisms of transcriptional regulation by Runt domain proteins. Semin Cell Dev Biol 11, 369–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Canon, J. & Banerjee, U. In vivo analysis of a developmental circuit for direct transcriptional activation and repression in the same cell by a Runx protein. Genes Dev 17, 838–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Westendorf, J.J. & Hiebert, S.W. Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. J Cell Biochem 32/33, 51–8 (1999).

    Article  Google Scholar 

  10. Speck, N.A. & Gilliland, D.G. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2, 502–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Namba, K. et al. Indispensable role of the transcription factor PEBP2/CBF in angiogenic activity of a murine endothelial cell MSS31. Oncogene 19, 106–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Sun, L., Vitolo, M. & Passaniti, A. Runt-relatedGene 2 in Endothelial Cells:Inducible Expression and Specific Regulation of Cell Migration and Invasion. Cancer Res 61, 4994–5001. (2001).

    CAS  PubMed  Google Scholar 

  13. Vaillant, F. et al. A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene 18, 7124–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, M.M., Jr. RUNX genes, neoplasia, and cleidocranial dysplasia. Am J Med Genet 104, 185–8 (2001).

    Article  PubMed  Google Scholar 

  15. Karsenty, G. Minireview: transcriptional control of osteoblast differentiation. Endocrinology 142, 2731–3 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Sato, Y. Molecular mechanism of angiogenesis transcription factors and their therapeutic relevance. Pharmacol Ther 87, 51–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Otto, F., Lubbert, M. & Stock, M. Upstream and downstream targets of RUNX proteins. J Cell Biochem 89, 9–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Tracey, W.D. & Speck, N.A. Potential roles for RUNX1 and its orthologs in determining hematopoietic cell fate. Semin Cell Dev Biol 11, 337–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Takakura, N. et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199–209. (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Ho, C.Y. et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1–22.2. Blood 87, 5218–24 (1996).

    CAS  PubMed  Google Scholar 

  22. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Rafii, S. Circulating endothelialprecursors: mystery, reality, and promise. J Clin Invest 105, 17–9. (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Satake, M. et al. Expression of the Runt domain-encoding PEBP2 alpha genes in T cells during thymic development. Mol Cell Biol 15, 1662–70 (1995).

    CAS  PubMed  Google Scholar 

  25. Ducy, P. & Karsenty, G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15, 1858–69 (1995).

    CAS  PubMed  Google Scholar 

  26. Kern, B., Shen, J., Starbuck, M. & Karsenty, G. Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J Biol Chem 276, 7101–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, Q. et al. Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol 162, 833–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Zelzer, E. et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 106, 97–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts [see comments]. Cell 89, 755–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development [see comments]. Cell 89, 765–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16, 307–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Ezaki, T. et al. Deletion mapping on chromosome 1p in well-differentiated gastric cancer. Br J Cancer 73, 424–8 (1996).

    CAS  PubMed  Google Scholar 

  33. Nam, S. et al. Expression pattern, regulation, and biological role of runt domain transcription factor, run, in Caenorhabditis elegans. Mol Cell Biol 22, 547–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Lund, A.H. & Van Lohuizen, M. RUNX: A trilogy of cancer genes. Cancer Cell 1, 213–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki, K. et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A 93, 12359–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Bravo, J., Li, Z., Speck, N.A. & Warren, A.J. The leukemia-associated AML1 (Runx1)-CBFbeta complex functions as a DNA-induced molecular clamp. Nat Struct Biol 8, 371–378. (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida, C.A. et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet 32, 633–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Hanahan, D. Signaling vascular morphogenesis and maintenance [comment]. Science 277, 48–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Baltzinger, M., Mager-Heckel, A.M. & Remy, P. Xl erg: expression pattern and overexpression during development plead for a role in endothelial cell differentiation. Dev Dyn 216, 420–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Lutterbach, B. & Hiebert, S.W. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 245, 223–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Meyers, S., Lenny, N. & Hiebert, S.W. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 15, 1974–82 (1995).

    CAS  PubMed  Google Scholar 

  42. Hiebert, S.W. et al. The t(12;21) translocation converts AML-1B from an activator to a represser of transcription. Mol Cell Biol 16, 1349–55 (1996).

    CAS  PubMed  Google Scholar 

  43. Lutterbach, B., Hou, Y., Durst, K.L. & Hiebert, S.W. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci U S A 96, 12822–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Castilla, L.H. et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 87, 687–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Lutterbach, B. et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18, 7176–84 (1998).

    CAS  PubMed  Google Scholar 

  46. Gelmetti, V. et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18, 7185–91 (1998).

    CAS  PubMed  Google Scholar 

  47. Fenrick, R. et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 19, 6566–74 (1999).

    CAS  PubMed  Google Scholar 

  48. Westendorf, J.J. et al. The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 18, 322–33 (1998).

    CAS  PubMed  Google Scholar 

  49. Blyth, K. et al. Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene 20, 295–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Stewart, M. et al. Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc Natl Acad Sci U S A 94, 8646–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Perry, C. et al. Complex regulation of acetylcholinesterase gene expression in human brain tumors. Oncogene 21, 8428–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kurokawa, M. et al. A conserved cysteine residue in the runt homology domain of AML1 is required for the DNA binding ability and the transforming activity on fibroblasts. J Biol Chem 271, 16870–6 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Barnes, G.L. et al. Osteoblast-related Transcription Factors Runx2 (Cbfa1/AML3) and MSX2 Mediate the Expression of Bone Sialoprotein in Human Metastatic Breast Cancer Cells. Cancer Res 63, 2631–7 (2003).

    CAS  PubMed  Google Scholar 

  54. Waltregny, D. et al. Increased expression of bone sialoprotein in bone metastases compared with visceral metastases in human breast and prostate cancers. J Bone Miner Res 15, 834–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Riminucci, M. et al. Coexpression of Bone Sialoprotein (BSP) and the Pivotal Transcriptional Regulator of Osteogenesis, Cbfa1/Runx2, in Malignant Melanoma. Calcif Tissue Int (2003).

    Google Scholar 

  56. Jimenez, M.J. et al. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J Cell Biol 155, 1333–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Selvamurugan, N., Pulumati, M.R., Tyson, D.R. & Partridge, N.C. Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alpha1. J Biol Chem 275, 5037–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Inman, C.K. & Shore, P. The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem (2003).

    Google Scholar 

  59. Brubaker, K.D., Vessella, R.L., Brown, L.G. & Corey, E. Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate 56, 13–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Yeung, F. et al. Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem 277, 2468–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Hanai, J. et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem 274, 31577–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–64. (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Bergers, G. & Hanahan, D. Combining antiangiogenic agents with metronomic chemotherapy enhances efficacy against late-stage pancreatic islet carcinomas in mice. Cold Spring Harb Symp Quant Biol 67, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Gorski, D.H. & Walsh, K. The role of homeobox genes in vascular remodeling and angiogenesis. Circ Res 87, 865–72 (2000).

    CAS  PubMed  Google Scholar 

  65. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis [see comments]. Science 277, 55–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Jimenez, M.J. et al. Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 19, 4431–42 (1999).

    CAS  PubMed  Google Scholar 

  67. Chang, F. et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Tanaka, K. et al. Increased expression of AML1 during retinoic-acid-induced differentiation of U937 cells. Biochem Biophys Res Commun 211, 1023–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Le, X.F. et al. Regulation of AML2/CBFA3 in hematopoietic cells through the retinoic acid receptor alpha-dependent signaling pathway. J Biol Chem 274, 21651–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Prince, M. et al. Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 80, 424–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Tou, L., Quibria, N. & Alexander, J.M. Regulation of human cbfa1 gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs). Mol Cell Endocrinol 183, 71–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Franceschi, R.T. & Xiao, G. Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J Cell Biochem 88, 446–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Massague, J. & Wotton, D. Transcriptional control by the TGFß/Smad signaling system. EMBO J 19, 1745–1754 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Tsuji, K., Ito, Y. & Noda, M. Expression of the PEBP2alphaA/AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone 22, 87–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Tou, L., Quibria, N. & Alexander, J.M. Transcriptional regulation of the human Runx2/Cbfa1 gene promoter by bone morphogenetic protein-7. Mol Cell Endocrinol 205, 121–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Banerjee, C. et al. Differential regulation of the two principal Runx2/Cbfa1 n-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 142, 4026–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Reddi, A.H., Roodman, D., Freeman, C. & Mohla, S. Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res 18, 190–4 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, K.S. et al. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20, 8783–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Alliston, T., Choy, L., Ducy, P., Karsenty, G. & Derynck, R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. Embo J 20, 2254–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Xiao, G., Cui, Y., Ducy, P., Karsenty, G. & Franceschi, R.T. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol 11, 1103–13 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Xiao, G., Wang, D., Benson, M.D., Karsenty, G. & Franceschi, R.T. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 273, 32988–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Xiao, G. et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275, 4453–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Wee, H.J., Huang, G., Shigesada, K. & Ito, Y. Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Rep 3, 967–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Liacini, A. et al. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res 288, 208–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Mengshol, J.A., Vincenti, M.P., Coon, C.I., Barchowsky, A. & Brinckerhoff, C.E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 43, 801–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. LaVallee, T.M., Prudovsky, I.A., McMahon, G.A., Hu, X. & Maciag, T. Activation of the MAP kinase pathway by FGF-1 correlates with cell proliferation induction while activation of the Src pathway correlates with migration. J Cell Biol 141, 1647–58 (1998).

    Article  Google Scholar 

  87. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Friedlander, M. et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 270, 1500–2 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Coffin, J.D. et al. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6, 1861–73 (1995).

    CAS  PubMed  Google Scholar 

  90. Liang, H., Pun, S. & Wronski, T.J. Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology 140, 5780–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Boudreaux, J.M. & Towler, D.A. Synergistic induction of osteocalcin gene expression: identification of a bipartite element conferring fibroblast growth factor 2 and cyclic AMP responsiveness in the rat osteocalcin promoter. J Biol Chem 271, 7508–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Xiao, G., Jiang, D., Gopalakrishnan, R. & Franceschi, R.T. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem 277, 36181–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Selvamurugan, N., Chou, W.Y., Pearman, A.T., Pulumati, M.R. & Partridge, N.C. Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domainbinding sequence. J Biol Chem 273, 10647–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Karaplis, A.C. & Goltzman, D. PTH and PTHrP effects on the skeleton. Rev Endocr Metab Disord 1, 331–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Hess, J., Porte, D., Munz, C. & Angel, P. AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem 276, 20029–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. D’Alonzo, R.C., Selvamurugan, N., Karsenty, G. & Partridge, N.C. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem 111, 816–22 (2002).

    Google Scholar 

  97. Brooks, P.C. et al. Insulin-like growth factor receptor cooperates with integrin alpha v beta 5 to promote tumor cell dissemination in vivo. J Clin Invest 99, 1390–8 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Drissi, H. et al. Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J Cell Physiol 184, 341–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Ghozi, M.C., Bernstein, Y., Negreanu, V., Levanon, D. & Groner, Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc Natl Acad Sci U S A 93, 1935–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Bangsow, C. et al. The RUNX3 gene—sequence, structure and regulated expression. Gene 279, 221–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Zambotti, A., Makhluf, H., Shen, J. & Ducy, P. Characterization of an osteoblast-specific enhancer element in the CBFA1 gene. J Biol Chem 277, 41497–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Kanzler, B., Kuschert, S.J., Liu, Y.H. & Mallo, M. Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125, 2587–97 (1998).

    CAS  PubMed  Google Scholar 

  103. Lecka-Czernik, B. et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 74, 357–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Tribioli, C. & Lufkin, T. The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126, 5699–711 (1999).

    CAS  PubMed  Google Scholar 

  105. Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24, 391–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Drissi, H. et al. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 274, 323–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Tintut, Y., Parhami, F., Le, V., Karsenty, G. & Demer, L.L. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. J Biol Chem 274, 28875–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Calo, V. et al. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 197, 157–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling crosstalk between RANKL and IFN-gamma. Nature 408, 600–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, S. et al. Statl functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 17, 1979–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Ruegg, C., Dormond, O. & Foletti, A. Suppression of tumor angiogenesis through the inhibition of integrin function and signaling in endothelial cells: which side to target? Endothelium 9, 151–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Aggarwal, B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3, 745–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Gilbert, L. et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem 277, 2695–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Stein, G.S. et al. Temporal and spatial parameters of skeletal gene expression: targeting RUNX factors and their coregulatory proteins to subnuclear domains. Connect Tissue Res 44 Suppl 1, 149–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Crosier, P.S. et al. Pathways in blood and vessel development revealed through zebrafish genetics. Int J Dev Biol 46, 493–502 (2002).

    CAS  PubMed  Google Scholar 

  116. Selvamurugan, N. & Partridge, N.C. Constitutive expression and regulation of collagenase-3 in human breast cancer cells. Mol Cell Biol Res Commun 3, 218–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Strom, D.K. et al. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. J Biol Chem 275, 3438–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Linggi, B. et al. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8, 743–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Kim, W.Y. et al. Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. Embo J 18, 1609–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Gu, T.L., Goetz, T.L., Graves, B.J. & Speck, N.A. Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Mol Cell Biol 20, 91–103 (2000).

    CAS  PubMed  Google Scholar 

  121. Wotton, D., Ghysdael, J., Wang, S., Speck, N.A. & Owen, M.J. Cooperative binding of Ets-1 and core binding factor to DNA. Mol Cell Biol 14, 840–50 (1994).

    CAS  PubMed  Google Scholar 

  122. Sato, Y. Transcription factor ETS-1 as a molecular target for angiogenesis inhibition. Hum Cell 11, 207–14 (1998).

    CAS  PubMed  Google Scholar 

  123. Pourtier-Manzanedo, A. et al. Expression of an Ets-1 dominant-negative mutant perturbs normal and tumor angiogenesis in a mouse ear model. Oncogene 22, 1795–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Ning, Y.M. & Robins, D.M. AML3/CBFalpha1 is required for androgen-specific activation of the enhancer of the mouse sex-limited protein (Slp) gene. J Biol Chem 274, 30624–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Culig, Z. et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54, 5474–8 (1994).

    CAS  PubMed  Google Scholar 

  126. McCarthy, T.L., Chang, W.Z., Liu, Y. & Centrella, M. Runx2 integrates estrogen activity in osteoblasts. J Biol Chem (2003).

    Google Scholar 

  127. Risau, W. & Flamme, I. Vasculogenesis. Annu Rev Cell Dev Biol 11, 73–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Pepper, M.S., Belin, D., Montesano, R., Orci, L. & Vassalli, J.D. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111, 743–55 (1990).

    Article  CAS  PubMed  Google Scholar 

  129. Koff, A., Ohtsuki, M., Polyak, K., Roberts, J.M. & Massague, J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. Science 260, 536–9 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Lyons, R.M. & Moses, H.L. Transforming growth factors and the regulation of cell proliferation. Eur J Biochem 187, 467–73 (1990).

    Article  CAS  PubMed  Google Scholar 

  131. Laiho, M., DeCaprio, J.A., Ludlow, J.W., Livingston, D.M. & Massague, J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 62, 175–85 (1990).

    Article  CAS  PubMed  Google Scholar 

  132. Newton, L.K., Yung, W.K., Pettigrew, L.C. & Steck, P.A. Growth regulatory activities of endothelial extracellular matrix: mediation by transforming growth factor-beta. Exp Cell Res 190, 127–32 (1990).

    Article  CAS  PubMed  Google Scholar 

  133. Jakubowiak, A. et al. Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem 275, 40282–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr Opin Genet Dev 13, 43–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Javed, A. et al. runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: evidence for promotercontext-dependent activity of Cbfa proteins. Mol Cell Biol 21, 2891–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Senger, D.R., Perruzzi, C.A. & Papadopoulos, A. Elevated expression of secreted phosphoprotein I (osteopontin, 2ar) as a consequence of neoplastic transformation. Anticancer Res 9, 1291–9 (1989).

    CAS  PubMed  Google Scholar 

  137. Brown, L.F. et al. Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3, 1169–80 (1992).

    CAS  PubMed  Google Scholar 

  138. Nemir, M. et al. Targeted inhibition of osteopontin expression in the mammary gland causes abnormal morphogenesis and lactation deficiency. J Biol Chem 275, 969–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Shijubo, N., Uede, T., Kon, S., Nagata, M. & Abe, S. Vascular endothelial growth factor and osteopontin in tumor biology. Crit Rev Oncog 11, 135–46 (2000).

    CAS  PubMed  Google Scholar 

  140. Koeffler, H.P. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res 9, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  141. Badawi, A.F. & Badr, M.Z. Chemoprevention of breast cancer by targeting cyclooxygenase-2 and peroxisome proliferator-activated receptor-gamma (Review). Int J Oncol 20, 1109–22 (2002).

    CAS  PubMed  Google Scholar 

  142. Jackson, S.M. & Demer, L.L. Peroxisome proliferator-activated receptor activators modulate the osteoblastic maturation of MC3T3-E1 preosteoblasts. FEBS Lett 471, 119–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Jeon, MJ. et al. Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278, 23270–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Shimada, H. et al. Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood 96, 655–63 (2000).

    CAS  PubMed  Google Scholar 

  145. Lutterbach, B. et al. A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translations in acute leukemia. J Biol Chem 275, 651–6 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Westendorf, J.J. et al. Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22, 7982–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Torchia, J., Glass, C. & Rosenfeld, M.G. Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol 10, 373–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Aronson, B.D., Fisher, A.L., Blechman, K., Caudy, M. & Gergen, J.P. Groucho-dependent and-independent repression activities of Runt domain proteins. Mol Cell Biol 17, 5581–7 (1997).

    CAS  PubMed  Google Scholar 

  149. Pelletier, N., Champagne, N., Stifani, S. & Yang, X.J. MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21, 2729–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70. (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Balmain, A. Cancer: new-age tumour suppressors. Nature 417, 235–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. de Guzman, C.G. et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 22, 5506–17 (2002).

    Article  PubMed  CAS  Google Scholar 

  153. Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Oettgen, P. Transcriptional regulation of vascular development. Circ Res 89, 380–8 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Anglin, I., Passaniti, A. (2004). Runx Protein Signaling in Human Cancers. In: Kumar, R. (eds) Molecular Targeting and Signal Transduction. Cancer Treatment and Research, vol 119. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7847-1_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7847-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7822-4

  • Online ISBN: 978-1-4020-7847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics