Skip to main content

EC Theory — “in Theory”

Towards a Unification of Evolutionary Computation Theory

  • Chapter
Frontiers of Evolutionary Computation

Part of the book series: Genetic Algorithms and Evolutionary Computation ((GENA,volume 11))

Abstract

We present a personal overview of EC theory. In particular, we try to show that recent theoretical developments have pointed the way to a grand unification of different branches of EC, such as Genetic Algorithms and Genetic Programming, and also different theoretical models, such as the Vose model and Holland’s Schema theorem. We give a broad outline of this unification program showing how the different elements above are related to each other via changes of representation on the space of EC models. Based on our work we pose a series of challenges which if met, we believe, will lead to a much deeper understanding of EC and the various types of evolutionary algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenberg, L. (1995). The Schema Theorem and Price’s Theorem. In Whitley, L. D. and Vose, M. D., editors, Foundations of Genetic Algorithms 3, pages 23–49, Estes Park, Colorado, USA. Morgan Kaufmann.

    Google Scholar 

  • Angeles, O., Stephens, C. R., and Waelbroeck, H. (1998). Emergence of algorithmic language in genetic systems. Biosystems, 47:129–147.

    Google Scholar 

  • Bäck, T. and Fogel, D. B. (2000). Glossary. In Bäck, T., Fogel, D. B., and Michalewicz, T., editors, Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing.

    Google Scholar 

  • Bürger, R. (2000). The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester, UK.

    Google Scholar 

  • Chung, S. W. and Perez, R. A. (1994). The schema theorem considered insufficient. In Proceedings of the Sixth IEEE International Conference on Tools with Artificial Intelligence, pages 748–751, New Orleans.

    Google Scholar 

  • Eigen, M., McCaskill, J., and Schuster, P. (1989). The molecular Quasispecies. Adv. Chem. Phys., 75:149–263.

    Google Scholar 

  • Fogel, D. B. and Ghozeil, A. (1997). Schemaprocessing under proportional selection in the presence of random effects. IEEE Transactions on Evolutionary Computation, l(4):290–293.

    Google Scholar 

  • Fogel, D. B. and Ghozeil, A. (1998). The schema theorem and the misallocation of trials in the presence of stochastic effects. In Porto, V. W., Saravanan, N., Waagen, D., and Eiben, A. E., editors, Evolutionary Programming VII: Proc. of the 7th Ann. Conf. on Evolutionary Programming, pages 313–321, Berlin. Springer.

    Google Scholar 

  • Goldberg, D. E. (1989a). Genetic algorithms and Walsh functions: I. A gentle introduction. Complex Systems, 3(2): 129–152.

    MATH  MathSciNet  Google Scholar 

  • Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: II. Deception and its analysis. Complex Systems, 3(2): 153–171.

    MATH  MathSciNet  Google Scholar 

  • Goldberg, D. E. (1989c). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Goldberg, D. E. (2002). The Design of Innovation. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Greene, W. A. (2000). A non-linear schema theorem for genetic algorithms. In Whitley, D., Goldberg, D. E., Cantu-Paz, E., Spector, L., Parmee, I., and Beyer, H.-G., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 189–194, Las Vegas, Nevada, USA. Morgan Kaufmann.

    Google Scholar 

  • Grefenstette, J. J. (1993). Deception considered harmful. In Whitley, L. D., editor, Foundations of Genetic Algorithms 2, San Mateo, CA. Morgan Kaufman.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA.

    Google Scholar 

  • Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-defined functions. Evolutionary Computation, 8(4):373–391.

    Article  MathSciNet  Google Scholar 

  • Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, The University of New Mexico, Albuquerque, NM.

    Google Scholar 

  • Langdon, W. B. and Poli, R. (1997). Fitness causes bloat. In Chawdhry, P. K., Roy, R., and Pant, R. K., editors, Soft Computing in Engineering Design and Manufacturing, pages 13–22. Springer-Verlag London.

    Google Scholar 

  • Langdon, W. B. and Poli, R. (2002). Foundations of Genetic Programming. Springer-Verlag.

    Google Scholar 

  • McPhee, N. F. and Poli, R. (2002). Using schema theory to explore interactions of multiple operators. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002), New York, USA. Morgan Kaufmann. (accepted as full paper).

    Google Scholar 

  • Mora, J., Stephens, C. R., Waelbroeck, H., and Zertuche, F. (1999). Symmetry breaking and adaptation: Evidence from a simple toy model of a viral neutralization epitope. Biosystems, 51:1–14.

    Google Scholar 

  • Nix, A. E. and Vose, M. D. (1992). Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence, 5(1):79–88.

    Article  MathSciNet  Google Scholar 

  • Nordin, P. (1997). Evolutionary Program Induction of Binary Machine Code and its Applications. PhD thesis, der Universitat Dortmund am Fachereich Informatik.

    Google Scholar 

  • Nordin, P. and Banzhaf, W. (1995a). Complexity compression and evolution. In Eshelman, L., editor, Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), pages 310–317, Pittsburgh, PA, USA. Morgan Kaufmann.

    Google Scholar 

  • Nordin, P. and Banzhaf, W. (1995b). Complexity compression and evolution. In Eshelman, L., editor, Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), pages 310–317, Pittsburgh, PA. Morgan Kaufmann.

    Google Scholar 

  • O’Neill, M. and Ryan, C. (2001). Grammatical evolution. IEEE Transaction on Evolutionary Compuation. Forthcomming.

    Google Scholar 

  • Poli, R. (2000a). Exact schema theorem and effective fitness for GP with one-point crossover. In Whitley, D., Goldberg, D. E., Cantu-Paz, E., Spector, L., Parmee, I., and Beyer, H.-G., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 469–476, Las Vegas. Morgan Kaufmann.

    Google Scholar 

  • Poli, R. (2000b). Why the schema theorem is correct also in the presence of stochastic effects. In Proceedings of the Congress on Evolutionary Computation (CEC 2000), pages 487–492, San Diego, USA.

    Google Scholar 

  • Poli, R. (2001a). Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover. Genetic Programming and Evolvable Machines, 2(2): 123–163.

    Article  MATH  MathSciNet  Google Scholar 

  • Poli, R. (2001b). General schema theory for genetic programming with subtree-swapping crossover. In Genetic Programming, Proceedings of EuroGP 2001, LNCS, Milan. Springer-Verlag.

    Google Scholar 

  • Poli, R. and Langdon, W. B. (1997). A new schema theory for genetic programming with one-point crossover and point mutation. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 278–285, Stanford University, CA, USA. Morgan Kaufmann.

    Google Scholar 

  • Poli, R. and McPhee, N. F. (2001a). Exact schema theory for GP and variable-length GAs with homologous crossover. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, California, USA. Morgan Kaufmann.

    Google Scholar 

  • Poli, R. and McPhee, N. F. (2001b). Exact schema theory for GP and variable-length GAs with homologous crossover. Technical Report CSRP-01-4, University of Birmingham, School of Computer Science.

    Google Scholar 

  • Poli, R., Rowe, J. E., and McPhee, N. F. (2001). Markov models for gp and variable-length gas with homologous crossover. Technical Report CSRP-01-6, University of Birmingham, School of Computer Science.

    Google Scholar 

  • Poli, R., Rowe, J. E., Stephens, C. R., and Wright, A. H. (2002a). Allele diffusion in linear genetic programming and variable-length genetic algorithms with subtree crossover. In Proceedings of EuroGP 2002.

    Google Scholar 

  • Poli, R., Stephens, C. R., Wright, A. H., and Rowe, J. E. (2002b). On the search biases of homologuous crossover in linear genetic programming and variable-length genetic algorithms. In Langdon, W. B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F., Burke, E., and Jonoska, N., editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages 868–876, New York. Morgan Kaufmann Publishers.

    Google Scholar 

  • Poli, R., Stephens, C. R., Wright, A. H., and Rowe, J. E. (2002c). A schema-theory-based extension of Geiringer’s theorem for linear GP and variable-length GAs under homologous crossover. In De Jong, K., Poli, R., and Rowe, J., editors, Proceedings of the Foundations of Genetic Algorithm (FOGA-VII) Workshop, Torremolinos.

    Google Scholar 

  • Prügel-Bennett, A. and Shapiro, J. L. (1994). An analysis of genetic algorithms using statistical mechanics. Physical Review Letters, 72:1305–1309.

    Google Scholar 

  • Radcliffe, N. J. (1997). Schema processing. In Baeck, T., Fogel, D. B., and Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages B2.5-1-10. Oxford University Press.

    Google Scholar 

  • Reidys, C. M. and Stadler, P. F. (2001). Neutrality in fitness landscapes. Appl. Math. & Comput., 117:321–350.

    MathSciNet  Google Scholar 

  • Reidys, C. M. and Stadler, P. F. (2002). Combinatorial landscapes. SIAM Review, 44:3–54.

    Article  MathSciNet  Google Scholar 

  • Stadler, P. F. and Stephens, C. R. (2003). Landscapes and effective fitness. Comm. Theor. Biol, to be published. Santa Fe Insitute Working Paper: 02-11-062.

    Google Scholar 

  • Stephens, C. R. (1999a). Effect of mutation and recombination on the genotype-phenotype map. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages 1382–1389, Orlando, Florida, USA. Morgan Kaufmann.

    Google Scholar 

  • Stephens, C. R. (1999b). Effective fitness landscapes for evolutionary systems. In Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A., editors, Proceedings of the Congress on Evolutionary Computation, volume 1, pages 703–714, Mayflower Hotel, Washington D.C., USA. IEEE Press.

    Google Scholar 

  • Stephens, C. R. (2001). Some exact results from a coarse grained formulation of genetic dynamics. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., and Burke, E., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 631–638, San Francisco, California, USA. Morgan Kaufmann.

    Google Scholar 

  • Stephens, C. R. (2003). The renormalization group and the dynamics of genetic systems. Acta Phys. Slov., to be published. Preprint: cond-mat/0210217.

    Google Scholar 

  • Stephens, C. R., García Olmedo, I., Mora Vargas, J., and Waelbroeck, H. (1998). Self-adaptation in evolving systems. Artificial Life, 4:183–201.

    Article  Google Scholar 

  • Stephens, C. R. and Vargas, J. M. (2000). Effective fitness as an alternative paradigm for evolutionary computation I: general formalism. Genetic programming and evolvable machines, 1(4):363–378.

    Article  Google Scholar 

  • Stephens, C. R. and Vargas, J. M. (2001). Effective fitness as an alternative paradigm for evolutionary computation II: examples and applications. Genetic programming and evolvable machines. Forthcoming.

    Google Scholar 

  • Stephens, C. R. and Waelbroeck, H. (1997). Effective degrees of freedom in genetic algorithms and the block hypothesis. In Bäck, T., editor, Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97), pages 34–40, East Lansing. Morgan Kaufmann.

    Google Scholar 

  • Stephens, C. R. and Waelbroeck, H. (1998). Effective degrees of freedom in genetic algorithms. Phys. Rev., 57:3251–3264.

    Google Scholar 

  • Stephens, C. R. and Waelbroeck, H. (1999). Schemata evolution and building blocks. Evolutionary Computation, 7(2): 109–124.

    Google Scholar 

  • Stephens, C. R., Waelbroeck, H., and Aguirre, R. (1999). Schemata as building blocks: Does size matter? In Banzhaf, W. and Reeves, C., editors, Foundations of Genetic Algorithms 5, pages 117–133. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  • van Nimwegen, E., Crutchfield, J. P., and Huynen, M. A. (1999). Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA, 96:9716–9720.

    Google Scholar 

  • Vose, M. D. (1999). The simple genetic algorithm: Foundations and theory. MIT Press, Cambridge, MA.

    Google Scholar 

  • Whitley, D. (1992). An executable model of a simple genetic algorithm. In Whitley, D., editor, Foundations of Genetic Algorithms Workshop (FOGA-92), Vail, Colorado.

    Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeeding and selection in evolution. In Jones, D. F., editor, Proceedings of the Sixth International Congress on Genetics, volume 1, pages 356–366.

    Google Scholar 

  • Wright, S. (1967). “Surfaces” of selective value. Proc. Nat. Acad. Sci. USA, 58:165–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stephens, C.R., Poli, R. (2004). EC Theory — “in Theory”. In: Menon, A. (eds) Frontiers of Evolutionary Computation. Genetic Algorithms and Evolutionary Computation, vol 11. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7782-3_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7782-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7524-7

  • Online ISBN: 978-1-4020-7782-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics