Skip to main content

Part of the book series: Algebra and Applications ((AA,volume 6))

Abstract

Sequences, which are generated by deterministic algorithms so as to simulate truly random sequences are said to be pseudorandom (PR). A pseudorandom sequence in the unit interval [0, 1) is called a sequence of pseudorandom numbers (PRNs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Aly and A. Winterhof, “On the linear complexity profile of nonlinear congruential pseudorandom number generators with Dickson polynomials”, Des. Codes Cryptogr., to appear.

    Google Scholar 

  2. H. Aly and A. Winterhof, “On the k-error linear complexity over Fp of Legendre and Sidelnikov sequences”, preprint 2005.

    Google Scholar 

  3. P. Beelen and J.M. Doumen, “Pseudorandom sequences from elliptic curves”, Finite fields with applications to coding theory, cryptography and related areas (Oaxaca, 2001), Springer, Berlin, 37–52 (2002).

    Google Scholar 

  4. T. Beth and Z.D. Dai, “On the complexity of pseudo-random sequences—or: If you can describe a sequence it can’t be random”, Advances in cryptology—EUROCRYPT ′89 (Houthalen, 1989), Lecture Notes in Comput. Sci., Vol. 434, 533–543 (1990).

    MATH  MathSciNet  Google Scholar 

  5. S.R. Blackburn, T. Etzion and K.G. Paterson, “Permutation polynomials, de Bruijn sequences, and linear complexity”, J. Combin. Theory Ser. A, Vol. 76, 55–82 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  6. S.R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. Shparlinski, “Predicting the inversive generator”, Lecture Notes in Comput. Sci., Vol. 2898, 264–275 (2003).

    MathSciNet  Google Scholar 

  7. S.R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. Shparlinski, “Predicting nonlinear pseudorandom number generators”, Math. Comp., Vol. 74, 1471–1494 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bourgain, “Mordell’s exponential sum estimate revisited”, J. Amer. Math. Soc., Vol. 18, 477–499 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Brandstätter, T. Lange and A. Winterhof, “On the non-linearity and sparsity of Boolean functions related to the discrete logarithm”, preprint 2005.

    Google Scholar 

  10. N. Brandstätter and A. Winterhof, “Some notes on the two-prime generator”, IEEE Trans. Inform. Theory, Vol. 51, 3654–3657 (2005).

    Article  MathSciNet  Google Scholar 

  11. N. Brandstätter and A. Winterhof, “Nonlinearity of binary sequences with small autocorrelation”, Proceedings of the Second International Workshop on Sequence Design and its Applications in Communications (IWSDA ′05), to appear.

    Google Scholar 

  12. N. Brandstätter and A. Winterhof, “Linear complexity profile of binary sequences with small correlation measure”, preprint 2005.

    Google Scholar 

  13. T.W Cusick, C. Ding and A. Renvall, Stream ciphers and number theory, Revised edition. North-Holland Mathematical Library, 66. Elsevier Science B.V, Amsterdam, 2004.

    MATH  Google Scholar 

  14. C. Ding, G. Xiao and W. Shan, The stability theory of stream ciphers, Lecture Notes in Computer Science, Vol. 561, Springer-Verlag, Berlin 1991.

    MATH  Google Scholar 

  15. G. Dorfer, W Meidl and A. Winterhof, “Counting functions and expected values for the lattice profile at n”, Finite Fields Appl., Vol. 10, 636–652 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Dorfer and A. Winterhof, “Lattice structure and linear complexity profile of nonlinear pseudorandom number generators”, Appl. Algebra Engrg. Comm. Comput., Vol. 13, 499–508 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Eichenauer, H. Grothe, J. Lehn and A. Topuzoğlu, “A multiple recursive nonlinear congruential pseudo random number generator”, Manuscripta Math., Vol. 59, 331–346 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Eichenauer and J. Lehn, “A nonlinear congruential pseudorandom number generator”, Statist. Hefte, Vol. 27, 315–326 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Eichenauer-Herrmann, “Statistical independence of a new class of inversive congruential pseudorandom numbers”, Math. Comp., Vol. 60, 375–384 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  20. Y.-C. Eun, H.-Y. Song and M.G. Kyureghyan, “One-error linear complexity over Fp of Sidelnikov sequences”, Sequences and Their Applications SETA 2004, Lecture Notes in Comput. Sci., Vol. 3486, 154–165 (2005).

    Article  Google Scholar 

  21. M. Flahive and H. Niederreiter, “On inversive congruential generators for pseudorandom numbers”, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991), Lecture Notes in Pure and Appl. Math., Vol. 141, 75–80 (1993).

    MATH  MathSciNet  Google Scholar 

  22. É. Fouvry, P. Michel, J. Rivat and A. Sárközy, “On the pseudorandomness of the signs of Kloosterman sums”, J. Aust. Math. Soc., Vol. 77, 425–436 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  23. J.B. Friedlander, C. Pomerance and I. Shparlinski, “Period of the power generator and small values of Carmichael’s function”, Math. Comp., Vol. 70, 1591–1605 (2001).

    Article  MathSciNet  Google Scholar 

  24. J.B. Friedlander, C. Pomerance and I. Shparlinski, “Corrigendum to: Period of the power generator and small values of Carmichael’s function”, Math. Comp., Vol. 71, 1803–1806 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  25. J.B. Friedlander and I. Shparlinski, “On the distribution of the power generator”, Math. Comp., Vol. 70, 1575–1589 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  26. R.A. Games and A.H. Chan, “A fast algorithm for determining the complexity of a binary sequence with period 2n, IEEE Trans. Inform. Theory, Vol. 29, 144–146 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  27. M.Z. Garaev, F. Luca, I. Shparlinski and A. Winterhof, “On the lower bound of the linear complexity over Fp of Sidelnikov sequences”, preprint 2005.

    Google Scholar 

  28. D. Gomez-Perez, J. Gutierrez and I. Shparlinski, “Exponential sums with Dickson polynomials”, Finite Fields Appl., Vol. 12, 16–25 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  29. F. Griffin, H. Niederreiter and I. Shparlinski, “On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders”, Applied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999), Lecture Notes in Comput. Sci., Vol. 1719, 87–93 (1999).

    MATH  MathSciNet  Google Scholar 

  30. F. Griffin and I. Shparlinski, “On the linear complexity profile of the power generator”, IEEE Trans. Inform. Theory, Vol. 46, 2159–2162 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Gutierrez and D. Gomez-Perez, “Iterations of multivariate polynomials and discrepancy of pseudorandom numbers”, Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), Lecture Notes in Comput. Sci., Vol. 2227, 192–199 (2001).

    MATH  MathSciNet  Google Scholar 

  32. J. Gutierrez, I. Shparlinski and A. Winterhof, “On the linear and nonlinear complexity profile of nonlinear pseudorandom number-generators”, IEEE Trans. Inform. Theory, Vol. 49, 60–64 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Gyarmati, “On a family of pseudorandom binary sequences”, Period. Math. Hungar., Vol. 49, 45–63 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  34. F. Hess and I. Shparlinski, “On the linear complexity and multidimensional distribution of congruential generators over elliptic curves”, Des. Codes and Cryptogr., Vol. 35, 111–117 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Jungnickel, Finite fields. Structure and arithmetics, Bibliographisches Institut, Mannheim, 1993.

    MATH  Google Scholar 

  36. A. Klapper, “The vulnerability of geometric sequences based on fields of odd characteristic”, J. Cryptology, Vol. 7, 33–51 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  37. N. Koblitz, Algebraic Aspects of Cryptography, Springer-Verlag, Berlin Heidelberg, 1998.

    MATH  Google Scholar 

  38. D.R. Kohel and I. Shparlinski, “On exponential sums and group generators for elliptic curves over finite fields”, Algorithmic number theory (Leiden, 2000), Lecture Notes in Comput. Sci., Vol. 1838, 395–404 (2000).

    MATH  MathSciNet  Google Scholar 

  39. S. Konyagin, T. Lange and I. Shparlinski, “Linear complexity of the discrete logarithm”, Des. Codes Cryptogr., Vol. 28, 135–146 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Lange and I. Shparlinski, “Certain exponential sums and random walks on elliptic curves”, Canad. J. Math., Vol. 57, 338–350 (2005).

    MATH  MathSciNet  Google Scholar 

  41. R. Lidl, G.L. Mullen and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 65. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.

    Google Scholar 

  42. J.L. Massey and S. Serconek, “Linear complexity of periodic sequences: a general theory”, Advances in cryptology—CRYPTO ′96 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Vol. 1109,358–371 1996.

    MathSciNet  Google Scholar 

  43. C. Mauduit and A. Sárközy, “On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol”, Acta Arith., Vol. 82, 365–377 (1997).

    MATH  MathSciNet  Google Scholar 

  44. W. Meidl, “How many bits have to be changed to decrease the linear complexity?”, Des. Codes Cryptogr., Vol. 33, 109–122 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  45. W. Meidl, “Linear complexity and k-error linear complexity for pn-periodic sequences”, Coding, cryptography and combinatorics, Progr. Comput. Sci. Appl. Logic, Vol. 23, 227–235 (2004).

    MATH  MathSciNet  Google Scholar 

  46. W. Meidl and A. Winterhof, “Lower bounds on the linear complexity of the discrete logarithm in finite fields”, IEEE Trans. Inform. Theory, Vol. 47, 2807–2811 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  47. W. Meidl and A. Winterhof, “Linear complexity and polynomial degree of a function over a finite field”, Finite fields with applications to coding theory, cryptography and related areas (Oaxaca, 2001), Springer, Berlin, 229–238 (2002).

    Google Scholar 

  48. W. Meidl and A. Winterhof, “On the linear complexity profile of explicit nonlinear pseudorandom numbers”, Inform. Process. Lett., Vol. 85, 13–18 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  49. W. Meidl and A. Winterhof, “On the linear complexity profile of some new explicit inversive pseudorandom numbers”, J. Complexity, Vol. 20, 350–355 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  50. W. Meidl and A. Winterhof, “On the autocorrelation of cyclotomic generators”, Finite fields and applications, Lecture Notes in Comput. Sci., Vol. 2948, 1–11 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  51. W. Meidl and A. Winterhof, “Some notes on the linear complexity of Sidelnikov-Lempel-Cohn-Eastman sequences”, Designs, Codes and Cryptography, to appear.

    Google Scholar 

  52. W. Meidl and A. Winterhof, “On the linear complexity profile of nonlinear pseudorandom number generators with Rédei functions”, Finite Fields Appl., to appear.

    Google Scholar 

  53. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

    Google Scholar 

  54. H. Niederreiter, “Constructions of (t, m, s)-nets”, Monte Carlo and quasi-Monte Carlo methods 1998 (Claremont, CA), Springer, Berlin, 70–85 (2000).

    Google Scholar 

  55. H. Niederreiter, “Linear complexity and related complexity measures for sequences”, Progress in cryptology—INDOCRYPT 2003, Lecture Notes in Comput. Sci., Vol. 2904, 1–17 (2003).

    Article  MathSciNet  Google Scholar 

  56. H. Niederreiter, “Constructions of (t, m, s)-nets and (t, s)-sequences”, Finite Fields Appl., Vol. 11, 578–600 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  57. H. Niederreiter and I. Shparlinski, “On the distribution and lattice structure of nonlinear congruential pseudorandom numbers”, Finite Fields Appl., Vol. 5, 246–253 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  58. H. Niederreiter and I. Shparlinski, “On the distribution of inversive congruential pseudorandom numbers in parts of the period”, Math. Comp., Vol. 70, 1569–1574 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  59. H. Niederreiter and I. Shparlinski, “Recent advances in the theory of nonlinear pseudorandom number generators”, Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong), Springer, Berlin, 86–102 (2002).

    Google Scholar 

  60. H. Niederreiter and I. Shparlinski, “On the average distribution of inversive pseudorandom numbers”, Finite Fields Appl., Vol. 8, 491–503 (2002).

    MATH  MathSciNet  Google Scholar 

  61. H. Niederreiter and A. Winterhof, “Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators”, Acta Arith., Vol. 93, 387–399 (2000).

    MATH  MathSciNet  Google Scholar 

  62. H. Niederreiter and A. Winterhof, “On the distribution of some new explicit nonlinear congruential pseudorandom numbers”, Sequences and Their Applications SETA 2004, Lecture Notes in Comput. Sci., Vol. 3486, 266–274, (2005).

    Article  Google Scholar 

  63. R. Nöbauer, “Rédei-Permutationen endlicher Körper”, Contributions to general algebra, 5 (Salzburg, 1986), Hölder-Pichler-Tempsky, Vienna, 235–246 (1987).

    Google Scholar 

  64. W.M. Schmidt, Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, Vol. 536, 1976.

    Google Scholar 

  65. I. Shparlinski, “On the linear complexity of the power generator”, Des. Codes Cryptogr., Vol. 23, 5–10 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  66. I. Shparlinski, Cryptographic applications of analytic number theory. Complexity lower bounds and pseudorandomness, Progress in Computer Science and Applied Logic, 22. Birkhäuser Verlag, Basel, 2003.

    Google Scholar 

  67. I. Shparlinski and A. Winterhof, “On the linear complexity of bounded integer sequences over different moduli”, Inform. Process. Lett., Vol. 96, 175–177 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  68. V.M. Sidel’nikov, “Some k-valued pseudo-random sequences and nearly equidistant codes”, Problems of Information Transmission, Vol. 5, 12–16 (1969); translated from Problemy Peredači Informacii, Vol. 5, 16–22 (1969), (Russian).

    MathSciNet  Google Scholar 

  69. M. Stamp and C.F. Martin, “An algorithm for the k-error linear complexity of binary sequences with period 2n, IEEE Trans. Inform. Theory, Vol. 39, 1398–1401 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  70. A. Tietäväinen, “Vinogradov’s method and some applications”, Number theory and its applications (Ankara, 1996), Lecture Notes in Pure and Appl. Math., Vol. 204, 261–282 (1999).

    MATH  Google Scholar 

  71. A. Topuzoğlu and A. Winterhof, “On the linear complexity profile of nonlinear congruential pseudorandom number generators of higher orders”, Appl. Algebra Engrg. Comm. Comput, Vol. 16, 219–228 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Topuzoğlu and A. Winterhof, “On the distribution of inversive congruential pseudorandom number generators of higher orders with largest possible period”, preprint 2006.

    Google Scholar 

  73. R.J. Turyn, “The linear generation of Legendre sequence”, J. Soc. Indust. Appl. Math., Vol. 12, 115–116 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  74. I.M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954.

    MATH  Google Scholar 

  75. Y. Wang, “Linear complexity versus pseudorandomness: on Beth and Dai’s result”, Advances in cryptology—ASIACRYPT′99 (Singapore), Lecture Notes in Comput. Sci., Vol. 1716, 288–298 (1999).

    MATH  Google Scholar 

  76. A. Winterhof, “A note on the linear complexity profile of the discrete logarithm in finite fields”, Coding, cryptography and combinatorics, Progr. Comput. Sci. Appl. Logic, Vol. 23, 359–367 (2004).

    MATH  MathSciNet  Google Scholar 

  77. A. Winterhof, “On the distribution of some new explicit inversive pseudorandom numbers and vectors”, Proceedings MC2QMC 2004, to appear.

    Google Scholar 

  78. G. Xiao and S. Wei, “Fast algorithms for determining the linear complexity of period sequences”, Progress in cryptology — INDOCRYPT 2002. Third international conference on cryptology in India, Hyderabad, India, December 16–18, 2002, Lect. Notes in Comput. Sci., Vol. 2551, 12–21, (2002).

    Article  MATH  Google Scholar 

  79. G. Xiao, S. Wei, K.Y. Lam and K. Imamura, “A fast algorithm for determining the linear complexity of a sequence with period pn over GF(q)”, IEEE Trans. Inform. Theory, Vol. 46, 2203–2206 (2000).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Topuzoğlu, A., Winterhof, A. (2006). PSEUDORANDOM SEQUENCES. In: Garcia, A., Stichtenoth, H. (eds) Topics in Geometry, Coding Theory and Cryptography. Algebra and Applications, vol 6. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5334-4_4

Download citation

Publish with us

Policies and ethics