Skip to main content

Molecular Timescale of Evolution in the Proterozoic

  • Chapter
Neoproterozoic Geobiology and Paleobiology

Part of the book series: Topics in Geobiology ((TGBI,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguinaldo, A. M., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., and Lake, J. A., 1997, Evidence for a clade of nematodes, arthropods and other moulting animals, Nature 387: 489–493.

    Google Scholar 

  • Amaral Zettler, L. A., Nerad, T. A., O’Kelly, C. J., and Sogin, M. L., 2001, The nucleariid amoebae: more protists at the animal-fungal boundary, J. Eukaryot. Microbiol. 48: 293–297.

    Google Scholar 

  • Aris-Brosou, S., and Yang, Z., 2002, Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny, Syst. Biol. 51: 703–714.

    Google Scholar 

  • Aris-Brosou, S., and Yang, Z., 2003, Bayesian models of episodic evolution support a late Precambrian explosive diversification of Metazoa, Mol. Biol. Evol. 20: 1947–1954.

    Google Scholar 

  • Arisue, N., Hasegawa, M., and Hashimoto, T., 2005, Root of the eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data, Mol. Biol. Evol. 22: 409–420.

    Google Scholar 

  • Balavoine, G., and Adoutte, A., 2003, The segmented Urbilateria: A testable scenario, Integr Comp Biol 43: 137–147.

    Google Scholar 

  • Baldauf, S. L., 2003, The deep roots of eukaryotes, Science 300: 1703–1706.

    Google Scholar 

  • Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., and Doolittle, W. F., 2000, A kingdom-level phylogeny of eukaryotes based on combined protein data, Science 290: 972–977.

    Google Scholar 

  • Bapteste, E., Brinkmann, H., Lee, J. A., Moore, D. V., Sensen, C. W., Gordon, P., Durufle, L., Gaasterland, T., Lopez, P., Muller, M., and Philippe, H., 2002, The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba, Proc. Nat. Acad. Sci. USA 99: 1414–1419.

    Google Scholar 

  • Battistuzzi, F. U., Feijao, A., and Hedges, S. B., 2004, A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land, BMC Evol Biol 4(1): 44 (doi:10.1186/1471-2148-4-44).

    Google Scholar 

  • Bell, C. D., Soltis, D. E., and Soltis, P. S., 2005, The age of the angiosperms: a molecular timescale without a clock, Evolution 59: 1245–58.

    Google Scholar 

  • Bell, G., and Mooers, A. O., 1997, Size and complexity among multicellular organisms, Biol. J. Linn. Soc. 60: 345–363.

    Google Scholar 

  • Bengtson, S., 1994, The advent of animal skeletons, in: Early life on Earth (S. Bengston, ed.), Columbia University Press, New York, pp. 412–425.

    Google Scholar 

  • Bengtson, S., and Farmer, J. D., 1992, The evolution of metazoan body plans, in: The Proterozoic biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, pp. 443–446.

    Google Scholar 

  • Berbee, M. L., and Taylor, J. W., 1993, Dating the evolutionary radiations of the true fungi, Can. J. Bot. 71: 1114–1127.

    Google Scholar 

  • Berbee, M. L., and Taylor, J. W., 2001, Fungal molecular evolution: gene trees and geologic time, in: The Mycota Vol. VIIB, Systematics and Evolution (D. J. McLaughlin and E. McLaughlin, eds.), Springer-Verlag, New York, pp. 229–246.

    Google Scholar 

  • Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M., and Wildman, R. A., 2003, Phanerozoic atmospheric oxygen, Annu. Rev. Earth and Planet. Sci. 31: 105–134.

    Google Scholar 

  • Blair, J. E., and Hedges, S. B., 2005a, Molecular clocks do not support the Cambrian explosion, Mol. Biol. Evol. 22: 387–90.

    Google Scholar 

  • Blair, J. E., and Hedges, S. B., 2005b, Molecular phylogeny and divergence times of deuterostome animals, Mol. Biol. Evol. 22: 2275–2284.

    Google Scholar 

  • Blair, J. E., Ikeo, K., Gojobori, T., and Hedges, S. B., 2002, The evolutionary position of nematodes, BMC Evol. Biol. 2: 7 (doi:10.1186/1471-2148-2-7).

    Google Scholar 

  • Blair, J. E., Shah, P., and Hedges, S. B., 2005, Evolutionary sequence analysis of complete eukaryote genomes, BMC Bioinformatics 6(1): 53 (doi:10.1186/1471-2105-6-53).

    Google Scholar 

  • Bonner, J. T., 1988, The evolution of complexity by means of natural selection, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Brennan, S. T., Lowenstein, T. K., and Horita, J., 2004, Seawater chemistry and the advent of biocalcification, Geology 32: 473–476.

    Google Scholar 

  • Brown, R. H., Richardson, M., Boulter, D., Ramshaw, J. A. M., and Jeffries, R. P. S., 1972, The amino acid sequence of cytochrome c from Helix aspera Müeller (Garden Snail), Biochem. J. 128: 971–974.

    Google Scholar 

  • Butterfield, N. J., 2000, Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes, Paleobiology 26: 386–404.

    Google Scholar 

  • Butterfield, N. J., 2005, Probable proterozoic fungi, Paleobiology 31(1): 165–182.

    Google Scholar 

  • Canfield, D., 2005, The early history of atmospheric oxygen: Homage to Robert A. Garrels, Annu. Rev. Earth and Planet. Sci. 33: 1–36.

    Google Scholar 

  • Canfield, D. E., and Teske, A., 1996, Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies, Nature 382: 127–132.

    Google Scholar 

  • Carver, J. H., and Vardavas, I. M., 1994, Precambrian glaciations and the evolution of the atmosphere, Ann. Geophys. 12: 674–682.

    Google Scholar 

  • Chen, J. Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H. M., Li, C. W., and Davidson, E. H., 2004, Small bilaterian fossils from 40 to 55 million years before the Cambrian, Science 305: 218–222.

    Google Scholar 

  • Cloud, P., 1976, Beginnings of biospheric evolution and their biogeochemical consequences, Paleobiology 2: 351–387.

    Google Scholar 

  • Conway Morris, S., 2000, The Cambrian ‘‘explosion’’: slow-fuse or megatonnage? Proc. Nat. Acad. Sci. USA 97: 4426–4429.

    Google Scholar 

  • Crane, P. R., Herendeen, P., and Friis, E. M., 2004, Fossils and plant phylogeny, Am. J. Bot. 91: 1683–1699.

    Google Scholar 

  • de Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoute, A., Akam, M., Carroll, S. B., and Balavoine, G., 1999, Hox genes in brachiopods and priapulids and protostome evolution, Nature 399: 772–776.

    Google Scholar 

  • Donoghue, P. C. J., Smith, M. P., and Sansom, I. J., 2003, The origin and early evolution of chordates: molecular clocks and the fossil record, in: Telling the Evolutionary Time: Molecular Clocks and the Fossil Record (P. C. J. Donoghue and M. P. Smith, eds.), CRC Press, Boca Raton, Florida, pp. 190–223.

    Google Scholar 

  • Doolittle, R. F., Feng, D.-F., Tsang, S., Cho, G., and Little, E., 1996, Determining divergence times of the major kingdoms of living organisms with a protein clock, Science 271: 470–477.

    Google Scholar 

  • Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F., and Philippe, H., 2004, The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proc. Nat. Acad. Sci. USA 101: 15386–15391.

    Google Scholar 

  • Doyle, J. A., 1998, Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales, Mol. Phyl. Evol. 9: 448–462.

    Google Scholar 

  • Feng, D.-F., Cho, G., and Doolittle, R. F., 1997, Determining divergence times with a protein clock: update and reevaluation, Proc. Nat. Acad. Sci. USA 94: 13028–13033.

    Google Scholar 

  • Gerrienne, P., Meyer-Berthaud, B., Fairon-Demaret, M., Streel, M., and Steemans, P., 2004, Runcaria, a middle Devonian seed plant precursor, Science 306: 856–858.

    Google Scholar 

  • Goremykin, V. V., Hansmann, S., and Martin, W. F., 1997, Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estiamtes of two seed plant divergence times, Plant Systemat. Evol. 206: 337–351.

    Google Scholar 

  • Gould, S. J., 1989, Wonderful life, W. W. Norton, New York.

    Google Scholar 

  • Hampl, V., Horner, D. S., Dyal, P., Kulda, J., Flegr, J., Foster, P., and Embley, T. M., 2005, Inference of the phylogenetic position of oxymonads based on nine genes: Support for Metamonada and Excavata, Mol. Biol. Evol. 22: 2508–2518.

    Google Scholar 

  • Han, T.-M., and Runnegar, B., 1992, Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee iron-formation, Michigan, Science 257: 232–235.

    Google Scholar 

  • Hasegawa, M., Kishino, H., and Yano, T., 1989, Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominoidea, J. Human Evol. 18: 461–476.

    Google Scholar 

  • Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., and Hedges, S. B., 2001, Molecular evidence for the early colonization of land by fungi and plants, Science 293: 1129–1133.

    Google Scholar 

  • Hedges, S. B., 2002, The origin and evolution of model organisms, Nat. Rev. Genet. 3: 838–849.

    Google Scholar 

  • Hedges, S. B., 2003, Molecular clocks and a biological trigger for the Neoproterozoic snowball Earths and Cambrian explosion., in: Telling Evolutionary Time: Molecular Clocks and the Fossil Record (P. C. J. Donoghue and M. P. Smith, eds.), Taylor and Francis, London, pp. 27–40.

    Google Scholar 

  • Hedges, S. B., Blair, J. E., Venturi, M. L., and Shoe, J. L., 2004, A molecular timescale of eukaryote evolution and the rise of complex multicellular life, BMC Evol Biol 4: 2 (doi:10.1186/1471-2148-4-2).

    Google Scholar 

  • Hedges, S. B., Chen, H., Kumar, S., Wang, D. Y., Thompson, A. S., and Watanabe, H., 2001, A genomic timescale for the origin of eukaryotes, BMC Evol. Biol. 1(1): 4 (doi:10.1186/1471-2148-1-4).

    Google Scholar 

  • Hedges, S. B., and Kumar, S., 2003, Genomic clocks and evolutionary timescales, Trends Genet. 19: 200–206.

    Google Scholar 

  • Hedges, S. B., and Kumar, S., 2004, Precision of molecular time estimates, Trends Genet. 20: 242–247.

    Google Scholar 

  • Hedges, S. B., Parker, P. H., Sibley, C. G., and Kumar, S., 1996, Continental breakup and the ordinal diversification of birds and mammals, Nature 381: 226–229.

    Google Scholar 

  • Ho, S. Y. W., Phillips, M. J., Drummond, A. J., and Cooper, A., 2005, Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation, Mol. Biol. Evol. 22: 1355–1363.

    Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P., 1998, A Neoproterozoic snowball Earth, Science 281: 1342–1346.

    Google Scholar 

  • Hoffmann, K. H., Condon, D. J., Bowring, S. A., and Crowley, J. L., 2004, U–Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation, Geology 32: 817–820.

    Google Scholar 

  • Holland, H. D., 2002, Volcanic gases, black smokers, and the Great Oxidation Event, Geochim. Cosmochim. Acta 21: 3811–3826.

    Google Scholar 

  • Horodyski, R. J., and Knauth, L. P., 1994, Life on land in the Precambrian, Science 263: 494–498.

    Google Scholar 

  • Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, W. R., 2000, Neoproterozoic ‘‘snowball Earth’’ simulations with a coupled climate/ice-sheet model, Nature 405: 425–429.

    Google Scholar 

  • Jensen, S., Droser, M. L., and Gehling, J. G., 2005, Trace fossil preservation and the early evolution of animals, Palaeogeogr. Palaeoclimat. Palaeoecol. 220: 19–29.

    Google Scholar 

  • Keeling, P. J., 2004, Diversity and evolutionary history of plastids and their hosts, Am. J. Bot. 91: 1481–1493.

    Google Scholar 

  • Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., Roger, A. J., and Gray, M. W., 2005, The tree of eukaryotes, Trends Ecol. Evol. 20: 670–676.

    Google Scholar 

  • Kimura, M., 1983, The neutral theory of molecular evolution, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Kishino, H., Thorne, J. L., and Bruno, W. J., 2001, Performance of a divergence time estimation method under a probabilistic model of rate evolution, Mol. Biol. Evol. 18: 352–361.

    Google Scholar 

  • Knoll, A. H., 2003, The geobiological consequences of evolution, Geobiology 1: 3–14.

    Google Scholar 

  • Knoll, A. H., 2004, Life on a Young Planet, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Kollman, J. M., and Doolittle, R. F., 2000, Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs, J. Mol. Evol. 51: 173–181.

    Google Scholar 

  • Kumar, S., 2001, Mesoproterozoic megafossil Chuaria Tawuia Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India., Precambrian Res. 106: 187–211.

    Google Scholar 

  • Kumar, S., 2005, Molecular clocks: four decades of evolution, Nat. Rev. Genet. 6: 654–662.

    Google Scholar 

  • Kumar, S., Filipski, A., Swarma, V., Walker, A., and Hedges, S. B., 2005, Placing confidence limits on the molecular age of the human-chimpanzee divergence, Proc. Nat. Acad. Sci. USA 102: 18842–18847.

    Google Scholar 

  • Kumar, S., and Hedges, S. B., 1998, A molecular timescale for vertebrate evolution, Nature 392: 917–920.

    Google Scholar 

  • Lenton, T. M., and Watson, A. J., 2004, Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic, Geophysical Research Letters 31: L05202 (doi: 10.1029/2003GL018802).

    Google Scholar 

  • Lutzoni, F., Kauff, F., Cox, C. J., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold, A. E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G. H., Lucking, R., Lumbsch, T., O’Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R. C., Hosaka, K., Lim, Y. W., Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R., and Vilgalys, R., 2004, Assembling the fungal tree of life: Progress, classification and evolution of subcellular traits, Am. J. Bot. 91: 1446–1480.

    Google Scholar 

  • Mallatt, J. M., Garey, J. R., and Shultz, J. W., 2004, Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin, Mol. Phyl. Evol. 31: 178–191.

    Google Scholar 

  • Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S. Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y., and Kuroiwa, T., 2004, Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D, Nature 428: 653–657.

    Google Scholar 

  • McShea, D. W., 2001, The hierarchical structure of organisms: a scale and documentation of a trend in the maximum, Paleobiology 27: 405–423.

    Google Scholar 

  • Meert, J. G., and Powell, C. M., 2001, Assembly and break-up of Rodinia: introduction to the special volume, Precambrian Res. 110: 1–8.

    Google Scholar 

  • Nei, M., Xu, P., and Glazko, G., 2001, Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms, Proc. Nat. Acad. Sci. USA 98: 2497–2502.

    Google Scholar 

  • Nursall, J. R., 1959, Oxygen as a prerequisite to the origin of the Metazoa, Nature 183: 1170–1172.

    Google Scholar 

  • Padovan, A. C. B., Sanson, G. F. O., Brunstein, A., and Briones, M. R. S., 2005, Fungi evolution revisited: Application of the penalized likelihood method to a Bayesian fungal phylogeny provides a new perspective on phylogenetic relationships and divergence dates of ascomycota groups, J. Mol. Evol. 60: 726–735.

    Google Scholar 

  • Peterson, K. J., and Butterfield, N. J., 2005, Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record, Proc. Nat. Acad. Sci. USA 102: 9547–9552.

    Google Scholar 

  • Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., and McPeek, M. A., 2004, Estimating metazoan divergence times with a molecular clock, Proc. Nat. Acad. Sci. USA 101: 6536–6541.

    Google Scholar 

  • Peterson, K. J., Waggoner, B., and Hagadorn, J. W., 2003, A fungal analog for Newfoundland Ediacaran fossils?, Integr. Comp. Biol. 43: 127–136.

    Google Scholar 

  • Philip, G. K., Creevey, C. J., and McInerney, J. O., 2005, The Opisthokonta and the Ecdysozoa may not be clades: Stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa, Mol. Biol. Evol. 22: 1175–1184.

    Google Scholar 

  • Philippe, H., and Germot, A., 2000, Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution, Mol. Biol. Evol. 17: 830–834.

    Google Scholar 

  • Philippe, H., Lartillot, N., and Brinkmann, H., 2005, Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia, Mol. Biol. Evol. 22: 1246–1253.

    Google Scholar 

  • Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., Moreira, D., Muller, M., and Le Guyader, H., 2000, Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions, Proc. Roy. Soc. London B Biol. 267: 1213–1221.

    Google Scholar 

  • Pisani, D., Poling, L. L., Lyons-Weiler, M., and Hedges, S. B., 2004, The colonization of land by animals: molecular phylogeny and divergence times among arthropods, BMC Biol 2(1): 1 (doi:10.1186/1741-7007-2-1).

    Google Scholar 

  • Poulsen, C. J., 2003, Absence of a runaway ice-albedo feedback in the Neoproterozoic, Geology 31: 473–476.

    Google Scholar 

  • Poulsen, C. J., and Jacob, R. L., 2004, Factors that inhibit snowball Earth simulation, Paleoceanography 19: PA4021 (doi:10.1029/2004PA001056).

    Google Scholar 

  • Retallack, G. J., 1994, Were the Ediacaran fossils lichens, Paleobiology 20: 523–544.

    Google Scholar 

  • Rhoads, D. C., and Morse, J. W., 1971, Evolutionary and ecological significance of oxygen-deficient marine faunas, Lethaia 4: 413–428.

    Google Scholar 

  • Richards, T. A., and Cavalier-Smith, T., 2005, Myosin domain evolution and the primary divergence of eukaryotes, Nature 436: 1113–1118.

    Google Scholar 

  • Rodriguez-Trelles, F., Tarrio, R., and Ayala, F. J., 2002, A methodological bias toward overestimation of molecular evolutionary time scales, Proc. Nat. Acad. Sci. USA 99: 8112–8115.

    Google Scholar 

  • Runnegar, B., 1982a, The Cambrian explosion: animals or fossils? J. Geol. Soc. Australia 29: 395–411.

    Google Scholar 

  • Runnegar, B., 1982b, A molecular-clock date for the origin of the animal phyla, Lethaia 15: 199–205.

    Google Scholar 

  • Samuelsson, J., and Butterfield, N. J., 2001, Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and paleobiological implications, Precambrian Res. 107: 235–251.

    Google Scholar 

  • Sanderson, M. J., 1997, A nonparametric approach to estimating divergence times in the absence of rate constancy, Mol. Biol. Evol. 14: 1218–1231.

    Google Scholar 

  • Sanderson, M. J., 2003, Molecular data from 27 proteins do not support a Precambrian origin of land plants, Am. J. Bot. 90: 954–956.

    Google Scholar 

  • Savard, L., Li, P., Strauss, S. H., Chase, M. W., Michaud, M., and Bousquet, J., 1994, Chloroplast and nuclear gene-sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants, Proc. Nat. Acad. Sci. USA 91: 5163–5167.

    Google Scholar 

  • Schlegel, M., 1994, Molecular phylogeny of eukaryotes, Trends Ecol. Evol. 9: 330–335.

    Google Scholar 

  • Schrag, D. P., Berner, R. A., Hoffman, P. F., and Halverson, G. P., 2002, On the initiation of a snowball Earth, Geochem. Geophys. Geosys. 3: 4 (doi: 10.1029/2001GC000219).

    Google Scholar 

  • Schubart, C. D., Diesel, R., and Hedges, S. B., 1998, Rapid evolution to terrestrial life in Jamaican crabs, Nature 393: 363–365.

    Google Scholar 

  • Schwartzman, D., and Volk, T., 1989, Biotic enhancement of weathering and the habitability of Earth, Nature 340: 457–460.

    Google Scholar 

  • Schwartzman, D. W., 1999, Life, Temperature, and the Earth, Columbia University Press, New York.

    Google Scholar 

  • Seilacher, A., Bose, P. K., and Pfluger, F., 1998, Triploblastic animals more than 1 billion years ago: trace fossil evidence from India, Science 282: 80–83.

    Google Scholar 

  • Sergeev, V. N., Gerasimenko, L. M., and Zavarzin, G. A., 2002, The Proterozoic history and present state of cyanobacteria, Microbiology 71: 623–637.

    Google Scholar 

  • Sheridan, P. P., Freeman, K. H., and Brenchley, J. E., 2003, Estimated minimal divergence times of the major bacterial and archaeal phyla, Geomicrobiol. J. 20(1): 1–14.

    Google Scholar 

  • Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A., and Peattie, D. A., 1989, Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia, Science 243: 75–77.

    Google Scholar 

  • Soltis, P. S., Soltis, D. E., Savolainen, V., Crane, P. R., and Barraclough, T. G., 2002, Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils, Proc. Nat. Acad. Sci. USA 99: 4430–4435.

    Google Scholar 

  • Stechmann, A., and Cavalier-Smith, T., 2002, Rooting the eukaryote tree by using a derived gene fusion, Science 297: 89–91.

    Google Scholar 

  • Stechmann, A., and Cavalier-Smith, T., 2003, The root of the eukaryote tree pinpointed, Curr. Biol. 13: R665–R666.

    Google Scholar 

  • Stewart, W. N., and Rothwell, G. W., 1993, Paleobotany and the Evolution of Plants, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Strother, P. K., and Beck, J. H., 2000, Spore-like microfossils from Middle Cambrian strata: expanding the meaning of the term cryptospore, in: Pollen and Spores: Morphology and Biology (M. M. Harley, C. M. Morton, and S. Blackmore, eds.), Royal Botanic Gardens, Kew, England, pp. 413–424.

    Google Scholar 

  • Takezaki, N., Rzhetsky, A., and Nei, M., 1995, Phylogenetic test of the molecular clock and linearized trees, Mol. Biol. Evol. 12: 823–833.

    Google Scholar 

  • Taylor, T. N., Hass, H., and Kerp, H., 1999, The oldest fossil ascomycetes, Nature 399: 648.

    Google Scholar 

  • Thorne, J. L., Kishino, H., and Painter, I. S., 1998, Estimating the rate of evolution of the rate of molecular evolution, Mol. Biol. Evol. 15: 1647–1657.

    Google Scholar 

  • van Tuinen, M., and Hadly, E. A., 2004, Error in estimation of rate and time inferred from the early amniote fossil record and avian molecular clocks, J. Mol. Evol. 59: 267–276.

    Google Scholar 

  • Wang, D. Y., Kumar, S., and Hedges, S. B., 1999, Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi, Proc. Roy. Soc. London. B Biol. 266: 163–171.

    Google Scholar 

  • Ward, P. D., and Brownlee, D., 2000, Rare Earth, Copernicus, New York.

    Google Scholar 

  • Watanabe, Y., Martini, J. E., and Ohmoto, H., 2000, Geochemical evidence for terrestrial ecosystems 2.6 billion years ago, Nature 408: 574–8.

    Google Scholar 

  • Wellman, C. H., Osterloff, P. L., and Mohluddin, U., 2003, Fragments of the earliest land plants, Nature 425: 282–285.

    Google Scholar 

  • Wolf, Y. I., Rogozin, I. B., and Koonin, E. V., 2004, Coelomata and not ecdysozoa: Evidence from genome-wide phylogenetic analysis, Genome Res. 14: 29–36.

    Google Scholar 

  • Woods, K. N., Knoll, A. H., and German, T. N., 1998, Xanthophyte Algae from the Mesoproterozoic/Neoproterozoic Transition: Confirmation and Evolutionary Implications., GSA Annu. Meeting Abstr. with Progr. 30: A232.

    Google Scholar 

  • Wray, G. A., Levinton, J. S., and Shapiro, L. H., 1996, Molecular evidence for deep Precambrian divergences among metazoan phyla, Science 274: 568–573.

    Google Scholar 

  • Xiao, S. H., Zhang, Y., and Knoll, A. H., 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391: 553–558.

    Google Scholar 

  • Yang, R.-D., Mao, J.-R., Zhang, W.-H., Jiang, L.-J., and Gao, H., 2004, Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili formation in Guizhou Province, China, Acta Bot. Sinica 46: 180–185.

    Google Scholar 

  • Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., and Bhattacharya, D., 2004, A molecular timeline for the origin of photosynthetic eukaryotes, Mol. Biol. Evol. 21: 809–18.

    Google Scholar 

  • Young, G. M., 2002, Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: Relevance to the snowball Earth debate, J. Afr. Earth Sci. 35: 451–466.

    Google Scholar 

  • Yuan, X. L., Xiao, S. H., and Taylor, T. N., 2005, Lichen-like symbiosis 600 million years ago, Science 308: 1017–1020.

    Google Scholar 

  • Zuckerkandl, E., and Pauling, L., 1962, Molecular disease, evolution, and genetic heterogeneity., in: Horizons in Biochemistry (M. Marsha and B. Pullman, eds.), Academic Press, New York, pp. 189–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hedges, S.B., Battistuzzi, F.U., Blair, J.E. (2006). Molecular Timescale of Evolution in the Proterozoic. In: Xiao, S., Kaufman, A.J. (eds) Neoproterozoic Geobiology and Paleobiology. Topics in Geobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5202-2_7

Download citation

Publish with us

Policies and ethics