Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 185))

Abstract

We characterized changes in diatom assemblages along an urban-to-rural gradient to assess impacts of urbanization on stream conditions. Diatoms, water chemistry, and physical variables of riffles at 19 urban and 28 rural stream sites were sampled and assessed during the summer base flow period. Near stream land use was characterized using GIS. In addition, one urban and one rural site were sampled monthly throughout a year to assess temporal variation of diatom assemblages between the urban and rural stream sites. Canonical correspondence analysis (CCA) showed that the 1st ordination axis distinctly separated rural and urban sites. This axis was correlated with conductivity (r=0.75) and % near-stream commercial/ industrial land use (r=0.55). TWINSPAN classified all sites into four groups based on diatom assemblages. These diatom-based site groups were significantly different in water chemistry (e.g., conductivity, dissolved nutrients), physical habitat (e.g., % stream substrate as fines), and near-stream land use. CCA on the temporal diatom data set showed that diatom assemblages had high seasonal variation along the 2nd axis in both urban and rural sites, however, rural and urban sites were well separated along the 1st ordination axis. Our results suggest that changes in diatom assemblages respond to urban impacts on stream conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrams, M. M. & C. Prescott, 1999. The endangered species act enters the urban landscape: can Portland streams sustain salmon? In Sakrison, R. & Sturtevant (eds), Watershed Management to Protect Declining Species. American Resources Association, Seattle Washington: 95–98.

    Google Scholar 

  • Biggs, B. J. F., 1995. The contribution of flood disturbance, catchment geology and land use to the habitat template of periphyton in stream ecosystems. Freshwater Biology 33: 419–438.

    Article  Google Scholar 

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J. M. L. Bothwell, & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 31–56.

    Google Scholar 

  • Biggs, B. J. F., R. J. Stevenson & R. L. Lowe, 1998. A habitat matrix conceptual model for stream periphyton. Archive für Hydrobiologia 143: 21–56.

    Google Scholar 

  • Bledsoe, B. P. & C. C. Watson, 2001. Effects of urbanization on channel instability. Journal of the American Water Resources Association 37: 255–270.

    Article  Google Scholar 

  • Booth, D. B. & C. R. Jackson, 1997. Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation. Journal of the American Water Resources Association 33: 1077–1090.

    Article  Google Scholar 

  • Bryant, J., 1995. The Effects of Urbanization of Water Quality in Puget Sound Lowland Streams. Masters Thesis, University of Washington, Seattle.

    Google Scholar 

  • Carter, J. L., S. V. Fend & S. S. Kennelly, 1996. The relationships among three habitat scalesand stream benthic invertebrate community structure. Freshwater Biology 35: 109–124.

    Article  Google Scholar 

  • Carpenter, K. D. & I. R. Waite, 2000. Relations of habitatspecific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon. Environmental Monitoring and Assessment 64: 247–257.

    Article  CAS  Google Scholar 

  • Clarke, S. E., D. White & A. L. Schaedel, 1991. Oregon, USA, ecological regions and subregions for water quality management. Environmental Management 16: 847–856.

    Article  Google Scholar 

  • Environmental Protection Agency, 1993. Methods for the determination of inorganic substances in environmental samples. Cincinnati, Ohio.

    Google Scholar 

  • ESRI, 1997. Environmental System Research Institute Inc., Redlands, CA.

    Google Scholar 

  • Finkenbine, J. F., J. W. Atwater & D. S. Mavinic, 2000. Stream health after urbanization. Journal of the American Water Resources Association 36: 1149–1160.

    Article  CAS  Google Scholar 

  • Grimm, N. B., J. M. Grove, S. T. A. Pickett & C. L. Redman, 2000. Integrated approaches to long-term studies of urban ecological systems. BioScience 50: 571–584.

    Article  Google Scholar 

  • Hill, M. O., R. G. H. Bunce & M. W. Shaw, 1975. Indicator species analysis, a divisive polythetic method of classification and its application to a survey of native pinewoods in Scotland. Journal of Ecology 63: 597–613.

    Article  Google Scholar 

  • Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, D.C.

    Google Scholar 

  • Klotz, R. L., J. R. Cain & F. R. Trainor, 1976. Algal competition in an epilithic river flora. Journal of Phycology 12: 363–368.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacilariophyceae, Teil 1. Naviculaceae. VEB Gustav Fisher Verlag, Jena.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Tiel 2. Epithemiaceae, Bacilariophyceae Surirellaceae. VEB Gustav Fisher Verlag, Jena.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacilariophyceae, Tiel 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. VEB Gustav Fisher Verlag, Jena.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacilariophyceae, Tiel 4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolate) und Gomphonema. VEB Gustav Fisher Verlag, Jena.

    Google Scholar 

  • Kroeger, S., E. Fensin, K. Lynch & M. Vander Borgh, 1999. United States Water Quality Programs that Use Algae as a Biological Assessment Tool. North Carolina Division of Water Quality, Raleigh, NC.

    Google Scholar 

  • Leland, H. V., 1995. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52: 1108–1129.

    Article  Google Scholar 

  • Leopold, 1968. Hydrology for urban land planning? a guidebook on the hydrologic effects of urban land use. USGS Circular 554.

    Google Scholar 

  • Lowe, R. L., 1974. Environmental requirements and pollution tolerance of freshwater diatoms. United States Environmental Protection Agency, Cincinnati, Ohio. EPA-670/4-74-005.

    Google Scholar 

  • McDonnell, M. J. & S. T. A. Pickett, 1990. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecologys. Ecology 71: 1232–1237.

    Article  Google Scholar 

  • Metro, 1997. Clackamas River Watershed Atlas. Portland, Oregon.

    Google Scholar 

  • Metro., 1999. Regional Land Information System (RLIS) Lite (CDrom). Metro’s Data Resource Center, Portland, Oregon.

    Google Scholar 

  • Molloy, J. M., 1992. Diatom communities along stream longitudinal gradients. Freshwater Biology 28: 59–69.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of North American Benthological Society 15: 481–495.

    Article  Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States. Vol. 1. Monographs of the Academy of Natural Sciences of Philadelphia No.13.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States. Vol. 2. Part 1 Monographs of the Academy of Natural Sciences of Philadelphia No.13.

    Google Scholar 

  • Richards, C., R. J. Haro, L. B. Johnson & G. E. Host, 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology 37: 219–230.

    Article  Google Scholar 

  • Sonneman, J. A., C. J. Walsh, P. F. Breen & A. K. Sharpe, 2001. Effects of urbanization on streams of the Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshwater Biology 46: 553–565.

    Article  CAS  Google Scholar 

  • Sonoda, K., J. A. Yeakley & C. E. Walker, 2001. Near-stream landuse effects on streamwater nutrient distribution in an urbanizing watershed. Journal of the American Water Resources Association 37(6): 1517–1532.

    Article  CAS  Google Scholar 

  • Stevenson, R. J, 1984. Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water pollution. Hydrobiologia 114: 161–174.

    Google Scholar 

  • Stevenson, R. J. & Y. Pan, 1999. Assessing ecological conditions in streams and rivers with diatoms. In Stoermer, E. & J. P. Smol (eds), The Diatoms: Applications to Environmental and Earth Sciences. Cambridge University Press, Cambridge, U.K: 11–40.

    Google Scholar 

  • Swanson, R. D., W. D. McFarland, J. B. Gonthier & J. M. Wilkinson, 1993. A description of hydrologic units in the Portland basin, Oregon and Washington. U.S. Geological Survey, Water-Resources Investigations Report 90-4196, 56 pp.

    Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Torquemada, R. & W. Platts, 1989. A comparison of sediment monitoring techniques of potential use in sediment/fish population relationships. Boise, Idaho, Dept. Fish and Game.

    Google Scholar 

  • Uhrich, M. A. & D. A. Wentz, 1999. Environmental setting of the Willamette Basin, Oregon. U.S. Dept. of the Interior, U.S. Geological Survey, Water-Resources Investigations Report 97-4082-A.

    Google Scholar 

  • Welch, E. B., J. M. Jacoby & C. W. May, 1998. Stream quality. In Naiman, R.J. & R.E. Bilby (eds), River Ecology and Management. Springer-Verlag, New York: 69–94.

    Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis (4th ed.). Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Walker, C.E., Pan, Y. (2006). Using diatom assemblages to assess urban stream conditions. In: Stevenson, R.J., Pan, Y., Kociolek, J.P., Kingston, J.C. (eds) Advances in Algal Biology: A Commemoration of the Work of Rex Lowe. Developments in Hydrobiology, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5070-4_13

Download citation

Publish with us

Policies and ethics