Skip to main content

Quantum Mechanics as a Theory of Probability

  • Chapter
Physical Theory and its Interpretation

Part of the book series: The Western Ontario Series in Philosophy of Science ((WONS,volume 72))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] Ghirardi, G.C., Rimini, A., and Weber, T. Unified dynamics for microscopic and macroscopic systems. Physical Review D 34, 470 (1984).

    Article  Google Scholar 

  2. [2] Bohm, D. and Hiley, B.J. The Undivided Universe: An ontological interpretation of quantum theory. London: Routledge (1993).

    Google Scholar 

  3. [3] Bell, J. S. Speakable and Unspeakable in Quantum Mechanics Cambridge: Cambridge University Press.

    Google Scholar 

  4. [4] Ramsey, F.P. Truth and Probability. (1926) reprinted In D. H. Mellor (ed) F. P. Ramsey: Philosophical Papers. Cambridge: Cambridge University Press (1990).

    Google Scholar 

  5. [5] Savage, L.J. The Foundations of Statistics. London: John Wiley and Sons (1954).

    Google Scholar 

  6. [6] Feynman, R. P. The concept of probability in quantum mechanics. Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, Berkeley: University of California Press, 553 (1951).

    Google Scholar 

  7. [7] Feynman, R. P. and Hibbs, A. R. Quantum Mechanics and Path Integrals New York: McGraw-Hill (1965).

    Google Scholar 

  8. [8] Pitowsky , I. George Boole’s “conditions of possible experience” and the quantum puzzle. British Journal for the Philosophy of Science 45, 95–125 (1994).

    Google Scholar 

  9. [9] Weinberg, S. Gravitation and cosmology: Principles and Applications of the General Theory of Relativity, New York: John Wiley & Sons (1972).

    Google Scholar 

  10. [10] Pitowsky, I. Unified field theory and the conventionality of geometry. Philosophy of Science 51, 685–689 (1984).

    Article  Google Scholar 

  11. [11] Ben Menahem Conventionalism, Cambridge: Cambridge University Press (2005).

    Google Scholar 

  12. [12] Bub, J. The Interpretation of Quantum Mechanics. Dordrecht: Reidel (1974).

    Google Scholar 

  13. [13] Bub, J. Quantum Mechanics is About Quantum Information, Foundations of Physics 35, 541 (2005).

    Article  Google Scholar 

  14. [14] Barnum, H. Caves, C. M. Finkelstein, J. Fuchs, C. A., and Schack, R. Quantum probability from decision theory? Proceedings of the Royal Society of London A 456, 1175 (2000).

    Article  Google Scholar 

  15. [15] Pitowsky, I. Betting on the outcomes of measurements: A Bayesian theory of quantum probability Studies in the History and Philosophy of Modern Physics 34, 395 (2003).

    Article  Google Scholar 

  16. [16] Stairs, A. Kipske, Tupman and quantum logic: the quantum logician’s conundrum. This volume.

    Google Scholar 

  17. [17] Deutsch, D. Quantum theory of probability and decisions, Proceedings of the Royal Society of London A455, 3129 (1999).

    Google Scholar 

  18. [18] Wallace, D. Everettian Rationality: defending Deutsch’s approach to probability in the Everett interpretation. Studies in the History and Philosophy of Modern Physics 34, 415 (2003).

    Article  Google Scholar 

  19. [19] Birkhoff, G. and von Neumann, J. The logic of quantum mechanics. Annals of Mathematics 37, 823 (1936).

    Article  Google Scholar 

  20. [20] Finkelstein, D. Logic of quantum physics. Transactions of the New York Academy of Science 25, 621 (1963).

    Google Scholar 

  21. [21] Putnam. H., The logic of quantum mechanics. (1968) reprinted inMathematics Matter and Method — Philosophical Papers Volume1. Cambridge: Cambridge University Press (1975).

    Google Scholar 

  22. [22] Pitowsky, I. Quantum Probability, Quantum Logic, Lecture Notes in Physics 321, Heidelberg: Springer (1989).

    Google Scholar 

  23. [23] Rédei, M. Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead). Studies in the History and Philosophy of Modern Physics 27, 493 (1996).

    Article  Google Scholar 

  24. [24] Solovay, R. M. A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics 92, 1 (1970).

    Article  Google Scholar 

  25. [25] Young, W. J. Projective Geometry Chicago: Open Court (1930).

    Google Scholar 

  26. [26] Artin, E. Geometric Algebra New York: John Wiley & Sons (1957).

    Google Scholar 

  27. [27] Solèr, M. P. Characterization of Hilbert spaces with orthomodular spaces Communications in Algebra 23, 219 (1995).

    Google Scholar 

  28. [28] Holland, S. S. Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bulletin of the American Mathematical Society 32, 205 (1995).

    Google Scholar 

  29. [29] Gleason, A. M. Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics 6, 885–893 (1957).

    Google Scholar 

  30. [30] Gödel, K. What is Cantor’s continuum problem? in Feferman, S. (ed.) Kurt Gödel’s collected Papers, Vol II Oxford: Oxford University Press (1990).

    Google Scholar 

  31. [31] Kochen, S. and Specker, E. P. The problem of hidden variables in muantum Mechanics. Journal of Mathematics and Mechanics 17, 59–87 (1967).

    Google Scholar 

  32. [32] Pitowsky, I. Infinite and finite Gleason’s theorems and the logic of indeterminacy. Journal of Mathematical Physics 39, 218 (1998).

    Article  Google Scholar 

  33. [33] Hrushovski, E. and Pitowsky, I. Generalizations of Kochen and Specker’s Theorem and the Effectiveness of Gleason’s Theorem. Studies in the History and Philosophy of Modern Physics 35, 177 (2004).

    Article  Google Scholar 

  34. [34] Clauser, J.F., Horne, M. A., Shimony, A., and Holt, R. A. Proposed experiment to test local hiddenvariable theories. Physical Review Letters 23, 880 (1969).

    Article  Google Scholar 

  35. [35] Fine, A. Hidden variables, joint probability and Bell inequalities. Physical Review Letters 48, 291 (1982).

    Article  Google Scholar 

  36. [36] Pitowsky, I. and Svozil, K. New Optimal tests of quantum nonlocality. Physical Review A 64, 4102 (2001).

    Article  Google Scholar 

  37. [37] Boole, G. On the theory of probabilities. Philosophical Transactions of the Royal Society of London 152, 225 (1862).

    Google Scholar 

  38. [38] Boole, G. The laws of Thought New York: Dover, 1958 (first published in 1854).

    Google Scholar 

  39. [39] Wigner, E. P. Group Theory and its Applications to Quantum Mechanics of Atomic Spectra. New York: Academic Press (1959).

    Google Scholar 

  40. [40] Uhlhorn, U. Representation of symmetry transformations in quantum mechanics. Arkiv Fysik 23, 307 (1963).

    Google Scholar 

  41. [41] Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states Physical Review Letters. 65, 1838 (1990).

    Article  Google Scholar 

  42. [42] Werner, R. F. and Wolf, M. All multipartite Bell correlation inequalities for two dichotomic observables per site. Physical Review A 64, 032112 (2001).

    Article  Google Scholar 

  43. [43] Zukowski M. and Brukner C. Bell’s theorem for general N-qubit states. Physical Review. Letters 88, 210401 (2002).

    Article  Google Scholar 

  44. [44] Pitowsky, I. Macroscopic objects in quantum mechanics-A combinatorial approach. Physical Review A 70, 022103 (2004).

    Article  Google Scholar 

  45. [45] Brukner, C. and Vedral, V. Macroscopic thermodynamical witnesses of quantum entanglement quant-ph/0406040 (2004).

    Google Scholar 

  46. [46] Ben Menahem, Y. Realism and quantum mechanics in A. van der Merve (ed): Microphysical Reality and Quantum Formalism Dordrecht: Kluwer, (1988).

    Google Scholar 

  47. [47] Demopoulos, W. Elementary propositions and essentially incomplete knowledge: A framework for the interpretation of quantum mechanics Noûs 38, 86 (2004).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Pitowsky, I. (2006). Quantum Mechanics as a Theory of Probability. In: Demopoulos, W., Pitowsky, I. (eds) Physical Theory and its Interpretation. The Western Ontario Series in Philosophy of Science, vol 72. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4876-9_10

Download citation

Publish with us

Policies and ethics