Skip to main content

Multiple Predator Interactions and Food-Web Connectance: Implications for Biological Control

  • Chapter
Trophic and Guild in Biological Interactions Control

Part of the book series: Progress in Biological Control ((PIBC,volume 3))

Abstract

The use of single versus multiple natural enemies in biological control remains controversial, largely due to the possibility for antagonistic interactions among predators (e.g., intraguild predation and cannibalism) that can reduce the potential for the top-down control of pest herbivores. Using a natural system, Spartina cordgrass and its associated community of arthropods (herbivores, strict predators and intraguild predators), we created 29 different treatment combinations of predators that varied in richness (number of predator species) and trophic composition (proportion of strict to intraguild predators) and measured the ability of each to reduce the density of a key herbivore (the planthopper Prokelisia dolus) in the system. We then calculated food-web connectance (the fraction of all possible directed feeding links that are realized in a food web) for each of the experimental food webs. Notably, food-web connectance is enhanced by predator-predator interactions such as intraguild predation and cannibalism. We found a significant negative relationship between food-web connectance and the ability of the predator complex to reduce prey populations. Specifically, well-connected food webs comprised of mostly intraguild predator species were far less effective at suppressing herbivores than webs consisting largely of strict predators. Importantly, trophic composition of the food web was more influential than predator richness in affecting top-down control. We also discovered that a food web comprised of multiple predators was more effective in suppressing herbivores when the structural complexity of the habitat was increased, a result that was attributable to spatial refuges for intraguild prey and relaxed intraguild predation. Thus, in this system, habitat structure has the potential to transform a well-connected food web into a less-connected one by reducing feeding links resulting from intraguild predation and cannibalism. Because of the remarkable similarity of the Spartina system to tropical Asian rice, this finding provides encouragement that the effectiveness of the predator complex can be enhanced by management practices that increase the structural complexity of the habitat and thereby dampen intraguild predation. Last, we discuss how food-web analyses might be used to evaluate particular combinations of predators for more effective biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arim, M., and Marquet, P.A., 2004, Intraguild predation: A widespread interaction related to species biology, Ecol. Lett. 7: 557-564.

    Article  Google Scholar 

  • Berlow, E.L., Navarrete, S.A., Briggs, C.J., Power, M.E., and Menge, B.A., 1999, tQuantifying variation in the strengths of species interactions. Ecology 80: 2206-2224.

    Article  Google Scholar 

  • Berlow, E.L., Neutel, A-M, Cohen, J.E., de Ruiter, P.C., Benjamin, B., Emmerson, M., Fox, J.W., Jansen, V.A.A., Jones, J.I., Kokkoris, G.D. , Logofet, D.O. , McKane, A.J. , Montoya, J.M., and Petchey. O., 2004, Interaction strengths in food webs: Issues and opportunities, J. Ecol. 73: 585-598.

    Google Scholar 

  • Bertness, M.D., 1991, Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh, Ecology 72: 138-148.

    Article  Google Scholar 

  • Bertness, M.D., and Pennings, S.C., 2000, Spatial variation in process and pattern in salt marsh plant communities in eastern North America, in: Concepts and Controversies in Tidal Marsh Ecology, M.P. Weinstein and D.A. Kreeger, eds., Kluwar Academic Publishers, Boston, pp. 39-57.

    Google Scholar 

  • Cardinale, B.J., Harvey, C.T., Gross, K., and Ives, A.R., 2003, Biodiversity and biocontrol: Emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem, Ecol. Lett. 6: 857-865.

    Article  Google Scholar 

  • Chalcraft, D.R., and Resetarits. W.J.J., 2003, Predator identity and ecological impacts: Functional redundancy or functional diversity? Ecology 84: 2407-2418.

    Google Scholar 

  • Chang, G.C., 1996, Comparison of single versus multiple species of generalist predators for biological control, Environ. Entomol. 25: 207-212.

    Google Scholar 

  • Closs, G.P., Balcombe, S.R., and Shirley, M.J., 1999, Generalist predators, interaction strength and food-web stability, Adv. Ecol. Res. 28: 93-126.

    Google Scholar 

  • Cook, A., and Denno, R.F., 1994, Planthopper-plant interactions: Feeding behavior, plant nutrition, plant defense, and host plant specialization, in: Planthoppers: Their Ecology and Management, R..F. Denno and T.J. Perfect, eds., Chapman and Hall, New York, pp. 114-139.

    Google Scholar 

  • Cronin, J.T., Haynes, K.J., and Dillemuth, F., 2004, Spider effects on planthopper mortality, dispersal, and spatial population dynamics, Ecology 85: 2134-2143.

    Google Scholar 

  • Denno, R.F., 1983, Tracking variable host plants in space and time, in: Variable Plants and Herbivores in Natural and Managed Systems, R.F. Denno and M.S. McClure, eds., Academic Press, New York, pp. 291-341.

    Google Scholar 

  • Denno, R.F., Finke, D.L., and Langellotto, G.A., 2005a, Direct and indirect effects of vegetation structure and habitat complexity on predator-prey and predator-predator interactions, in Ecology of Predator-Prey Interactions, P. Barbosa and I. Castellanos, eds., Oxford University Press, London, pp. 211-239.

    Google Scholar 

  • Denno, R.F., Gratton, C., Döbel, H., and Finke, D.L., 2003, Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores, Ecology 84: 1032-1044.

    Google Scholar 

  • Denno, R.F., Gratton, C., Peterson, M.A., Langellotto, G.A., Finke, D.L., and Huberty, A.F., 2002, Bottom-up forces mediate natural-enemy impact in a phytophagous insect community, Ecology 83: 1443-1458.

    Article  Google Scholar 

  • Denno, R.F., and Grissell, E.E., 1979, The adaptiveness of wing- dimorphism in the salt marsh-inhabiting planthopper, Prokelisia marginata (Homoptera: Delphacidae), Ecology 60: 221-36.

    Article  Google Scholar 

  • Denno, R.F., Lewis, D., and Gratton, C., 2005 b, Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous insect populations, Annal. Zool. Fenn. 42: 295-311.

    Google Scholar 

  • Denno, R.F., Mitter, M.S., Langellotto, G.A., Gratton, C., and Finke, D.L., 2004, Interactions between a hunting spider and a web-builder: Consequences of intraguild predation and cannibalism for prey suppression, Ecol. Entomol. 29: 566-577.

    Article  Google Scholar 

  • Denno, R.F., and Peterson, M.A., 2000, Caught between the devil and the deep blue sea, mobile planthoppers elude natural enemies and deteriorating host plants, Am. Entomol. 46: 95-109.

    Google Scholar 

  • Denno, R.F., Peterson, M.A., Gratton, C., Cheng, J., Langellotto, G.A., Huberty, A.F., and Finke, D.L., 2000, Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores, Ecology 81: 1814-1827.

    Article  Google Scholar 

  • Denno, R.F., Roderick, G.K., Peterson, M.A., Huberty, A.F., Döbel, H.G., Eubanks, M.D., Losey, J.E., and Langellotto, G.A., 1996, Habitat persistence underlies the intraspecific dispersal strategies of planthoppers, Ecol. Mono. 66: 389-408.

    Article  Google Scholar 

  • Denoth, M., Frid, L., and Myers, J.H., 2002, Multiple agents in biological control: improving the odds? Biol. Cont. 24: 20-30.

    Article  Google Scholar 

  • Döbel, H.G., and Denno, R.F., 1994, Predator-planthopper interactions, in: Planthoppers: Their Ecology and Management, R.F. Denno and T.J. Perfect, eds., Chapman and Hall, New York, pp. 325-399.

    Google Scholar 

  • Downing, A.L., and Leibold, M.A., 2002, Ecosystem consequences of species richness and composition in pond food webs, Nature 416: 837-841.

    Article  PubMed  CAS  Google Scholar 

  • Dunne, J.A., Williams, R.J., and Martinez, N.D., 2002, Food web structure and network theory: role of connectance and size, Proc. Nat. Acad. Sci. USA, 99: 12917-12922.

    Article  CAS  Google Scholar 

  • Eubanks, M.D., 2001, Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops, Biol. Cont. 21: 35-43.

    Article  Google Scholar 

  • Fagan, W.F., 1997, Omnivory as a stabilizing feature of natural communities, Am. Nat. 150: 554-567.

    Article  Google Scholar 

  • Fagan, W.F., Hakim, A.L., Ariawan, H., and Yuliyantiningsih, S., 1998, Interactions between biological control efforts and insecticide applications in tropical rice agroecosystems: The potential role of intraguild predation, Biol. Cont. 13: 121-126.

    Article  Google Scholar 

  • Finke, D.L., 2005, Predator diversity, habitat complexity and the strength of terrestrial trophic cascades, Doctoral dissertation, Department of Entomology, University of Maryland, College Park.

    Google Scholar 

  • Finke, D.L., and Denno, R.F., 2002, Intraguild predation diminished in complex-structured vegetation: Implications for prey suppression, Ecology 83: 643-652.

    Article  Google Scholar 

  • Finke, D. L., and Denno, R. F., 2003, Intra-guild predation relaxes natural enemy impacts on herbivore populations, Ecol. Entomol. 28: 67-73.

    Article  Google Scholar 

  • Finke, D.L., and Denno, R.F., 2004, Predator diversity dampens trophic cascades, Nature 429: 407-410.

    Article  PubMed  CAS  Google Scholar 

  • Finke, D.L., and Denno, R.F., 2005, Predator diversity and the functioning of ecosystems: The role of intraguild predation in dampening trophic cascades, Ecol. Lett. 8: 1299-1306.

    Article  Google Scholar 

  • Gallagher, J.L., Somers, G.F., Grant, D.M., and Seliskar, D.M., 1988, Persistent differences in two forms of Spartina alterniflora: a common garden experiment. Ecology 69: 1005-1008.

    Article  Google Scholar 

  • Hart, D.R. 2002. Intraguild predation, invertebrate predators, and trophic cascades in lake food webs, J. Theor. Biol. 218: 111-128.

    Article  PubMed  Google Scholar 

  • Hawkins, B.A., Mills, N.J., Jervis, M.A., and Price, P.W., 1999, Is the biological control of insects a natural phenomenon? Oikos 86: 493-506.

    Article  Google Scholar 

  • Heinz, K.M., and Nelson, J.M., 1996, Interspecific interactions among natural enemies of Bemisia in an inundative biological control program, Biol. Cont. 6: 384-393.

    Article  Google Scholar 

  • Heong, K.L., and Schoenly, K.G., 1998, Impact of insecticides on herbivore-natural enemy communities in tropical rice ecosystems, in: Ecotoxicology: Pesticides and Beneficial Organisms, P.T. Haskell and P. McEwen, eds, Chapman and Hall, London, pp. 381-403.

    Google Scholar 

  • Hochberg, M.E., 1996, Consequences for host population levels of increasing natural enemy species richness in classical biological control, Am. Nat. 147: 307-318.

    Article  Google Scholar 

  • Hodge, M.A., 1999, The implications of intraguild predation for the role of spiders in biological control, J. Arach. 27: 351-362.

    Google Scholar 

  • Huston, M.A., 1997, Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity, Oecologia 110: 449-460.

    Article  Google Scholar 

  • Jolliffe, P.A., 2000, The replacement series, J. Ecol. 88: 371-385.

    Article  Google Scholar 

  • Kenmore, P.E., Cariño, F.O., Perez, C.A., Dyck, V.A., and Gutierrez, A.P., 1984, Population regulation of the rice brown planthopper (Nilaparvata lugens) within rice fields in the Philippines, J. Plant Prot. Trop. 1: 19-37.

    Google Scholar 

  • Langellotto, G., 2002, The aggregation of invertebrate predators in complex habitats: Ecological mechanisms and practical applications, Doctoral Dissertation, Department of Entomology, University of Maryland, College Park, MD.

    Google Scholar 

  • Langellotto, G.A., and Denno, R.F., 2004, Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis, Oecologia 139: 1-10.

    Article  PubMed  Google Scholar 

  • Lima, S.L., 1998, Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives, Adv. Stud. Behav. 27: 215-290.

    Article  Google Scholar 

  • Losey, J.E., and Denno, R.F., 1998, Positive predator-predator interactions: Enhanced predation rates and synergistic suppression of aphid populations, Ecology 79: 2143-2152.

    Article  Google Scholar 

  • Losey, J.E., and Denno, R.F., 1999, Factors facilitating synergistic predation: The central role of synchrony, Ecol. Appl. 9: 378-386.

    Article  Google Scholar 

  • Lucas, E., Coderre, D., and Brodeur, J., 1998, Intraguild predation among aphid predators: Characterization and influence of extraguild prey, Ecology 79: 1084-1092.

    Article  Google Scholar 

  • Magnhagen, C., 1991, Predation risk as a cost of reproduction, Trends Ecol. Evol. 6: 183-186.

    Article  Google Scholar 

  • Matsumura, M., Trafelet-Smith, G.M., Gratton, C., Finke, D.L., Fagan, W.F., and Denno, R.F., 2004, Does intraguild predation enhance predator performance? A stoichiometric perspective, Ecology 89: 2601-2615.

    Google Scholar 

  • May, R.M., 1973, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • McCann, K.S., 2000, The diversity-stability debate, Nature 405: 228-233.

    Article  PubMed  CAS  Google Scholar 

  • McCann, K.S., and Hastings, A., 1997, Re-valuating the omnivory-stability relationship in food webs, Proc. Roy. Soc. Lond. B 264: 1249-1254.

    Article  Google Scholar 

  • McCann, K S., Hastings, A., and Huxel, G.R., 1998, Weak trophic interactions and the balance of nature, Nature 395: 794-798.

    Article  CAS  Google Scholar 

  • Melián, C.J. and Bascompte, J., 2004, Food web cohesion, Ecology 85: 352-358.

    Google Scholar 

  • Montoya, J.M., Rodríguez, M.A., and Hawkins, B.A., 2003, Food web complexity and higher-level ecosystem services, Ecol. Lett. 6: 587-593.

    Article  Google Scholar 

  • Morin, P.J., 1999, Community Ecology, Blackwell Science, Inc., London, UK.

    Google Scholar 

  • Naeem, S., and Li, S., 1997, Biodiversity enhances ecosystem reliability, Nature 390: 507-509.

    Article  CAS  Google Scholar 

  • Ohgushi, T., Craig, A., and Price, P.W., eds, in press, Indirect Interaction Webs: Nontrophic Linkages Through Induced Plant Traits, Cambridge University Press, London, UK.

    Google Scholar 

  • Ornes, W.H., and Kaplan, D.I., 1989, Macronutrient status of tall and short forms of Spartina alterniflorain a South Carolina salt marsh, Mar. Ecol. Prog. Ser. 55: 63-72.

    Google Scholar 

  • Parsons, M.H., Walker, S.E., and Rypstra, A.L., 2002, Fitness costs and benefits of antipredator behaviour mediated by chemotactical cues in the wolf spider Pardosa milvina (Araneae: Lycosidae), Beh. Ecol. 13: 386-392.

    Article  Google Scholar 

  • Pimm, S.L., Lawton, J.H., and Cohen, J.E., 1991, Food web patterns and their consequences, Nature 350: 669-674.

    Article  Google Scholar 

  • Phoofolo, M.W., and Obrycki, J.J., 1998, Potential for intraguild predation and competition among predatory Coccinellidae and Chrysopidae, Entomol. Exp. Appl. 89: 47-55.

    Article  Google Scholar 

  • Polis, G., 1998, Stability is woven by complex webs, Nature 395: 744-745.

    Article  Google Scholar 

  • Polis, G., Myers, C., and Holt, R., 1989, The ecology and evolution of intraguild predation: Potential competitors that eat each other, Ann. Rev. Ecol. Syst. 20: 297-330.

    Article  Google Scholar 

  • Polis, G., and Strong, D.R., 1996, Food web complexity and community dynamics, Am. Nat. 147: 813-846.

    Article  Google Scholar 

  • Prasad, R.P., and Snyder, W.E., 2004, Predator interference limits fly egg biological control by a guild of ground-active beetles, Biol. Cont. 31: 428-437.

    Article  Google Scholar 

  • Redfield, A. C., 1972, Development of a New England salt marsh, Ecol. Mono. 42: 201-237.

    Article  Google Scholar 

  • Riechert, S.E. and Bishop, L., 1990, Prey control by an assemblage of generalist predators: Spiders in a garden test system, Ecology 71: 1441-1450.

    Article  Google Scholar 

  • Riechert, S.E. and Lawrence, K., 1997, Test for predation effects of single versus multiple species of generalist predators: spiders and their insect prey, Entomol. Exp. Appl. 84: 147-155.

    Article  Google Scholar 

  • Rosenheim J.A., 1998, Higher order predators and the regulation of insect herbivore populations, Ann. Rev. Entomol. 43: 421-447.

    Article  CAS  Google Scholar 

  • Rosenheim, J.A., Glik, T.E., Goeriz, R.E., and Rämert, B., 2004, Linking a predator’s foraging behavior with its effects on herbivore population suppression, Ecology 85: 3362-3372.

    Google Scholar 

  • Rosenheim, J.A., Kaya, H.K., Ehler, L.E., Marois, J.J., and Jaffee, B.A., 1995, Intraguild predation among biological-control agents: theory and evidence, Biol. Cont. 5: 303-335.

    Article  Google Scholar 

  • Rosenheim J.A., and Wilhoit, L.R., 1993, Predators that eat other predators disrupt cotton aphid control, Cal. Ag. 47: 7-9.

    Google Scholar 

  • Rosenheim J.A., Wilhoit, L.R., and Armer, C.A., 1993, Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population, Oecologia 96: 439-449.

    Article  Google Scholar 

  • SAS Institute, 2000, JMP Statistics and Graphics Guide, SAS Institute, Cary, North Carolina. Schmitz, O.J., 1998, Direct and indirect effects of predation and predation risk in old-field interaction webs, Am. Nat., 151: 327-342.

    Article  Google Scholar 

  • Schmitz, O.J., Beckerman, A.P., and O’Brien, K.M., 1997, Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions, Ecology 78: 1388-1399.

    Article  Google Scholar 

  • Schoenly, K., Beaver, R.A., and Heumier, T.A., 1991, On the trophic relations of insects: A food-web approach, Am. Nat. 137: 597-638.

    Article  Google Scholar 

  • Schoenly, K.G., Justo, H.D., Barrion, A.T., Harris, M.K., and Bottrell, D.G., 1998, Analysis of invertebrate biodiversity in a Philippine farmer’s irrigated rice field, Environ. Entomol. 27: 1125-1136.

    Google Scholar 

  • Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakim, A. L., Hindayana, D., Lestari, A. S., and Sartanto, P., 1996, Managing tropical rice pests through conservation of generalist natural enemies and alternative prey, Ecology 77: 1975-1988.

    Article  Google Scholar 

  • Sih, A., Englund, G., and Wooster, D., 1998, Emergent impacts of multiple predators on prey, Trends Ecol. Evol. 13: 350-355.

    Article  Google Scholar 

  • Snyder, W.E., Chang, G.C., and Prasad, R.P., 2005, Conservation biological control: Biodiversity influences the effectiveness of predators, in: Ecology of Predator-Prey Interactions, P. Barbosa and I. Castellanos, eds., Oxford University Press, London, pp. 324-343.

    Google Scholar 

  • Snyder, W.E., and Ives, A.R., 2001, Generalist predators disrupt biological control by a specialist parasitoid, Ecology 82: 1571-1583.

    Article  Google Scholar 

  • Snyder, W.E., and Wise, D.H., 1999, Predator interference and the establishment of generalist predators populations for biocontrol, Biol. Cont. 15: 283-292.

    Article  Google Scholar 

  • Straub, C.S., and Snyder, W.E., 2006, Species identity dominates the relationship between predator biodiversity and herbivore suppression, Ecology.

    Google Scholar 

  • Strauss, S. Y., 1991, Indirect effects in community ecology: Their definition, study and importance, Trends Ecol. Evol. 6: 206-210.

    Article  Google Scholar 

  • Symondson, W.O.C, Sunderland, K.D., and Greenstone, M.H., 2002, Can generalist predators be effective biocontrol agents? Ann. Rev. Entomol. 47: 561-594.

    Article  CAS  Google Scholar 

  • Walde, S.J., Hardman, M., and Magagula, C.N., 1997, Direct and indirect species interactions influencing within-season dynamics of apple rust mite, Aculus schlechtendali (Acari: Eriophyidae), Exp. Appl. Acar. 21: 587-614.

    Article  Google Scholar 

  • Wilby, A., and Thomas, M.B., 2002, Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification, Ecol. Lett. 5: 353-360.

    Article  Google Scholar 

  • Winemiller, K.O., 1990, Spatial variation in tropical fish networks, Ecol. Mono. 60: 331-367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Denno, R.F., Finke, D.L. (2006). Multiple Predator Interactions and Food-Web Connectance: Implications for Biological Control. In: Brodeur, J., Boivin, G. (eds) Trophic and Guild in Biological Interactions Control. Progress in Biological Control, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4767-3_3

Download citation

Publish with us

Policies and ethics