Skip to main content

Carbon Sequestration in Soil and Biomass Following Afforestation: Experiences from Oak and Norway Spruce Chronosequences in Denmark, Sweden and the Netherlands

  • Chapter
Environmental Effects of Afforestation in North-Western Europe

Part of the book series: Plant and Vegetation ((PAVE,volume 1))

Abstract

There is limited knowledge of the contribution of afforested arable land to mitigation of greenhouse effects. In the AFFOREST project we evaluated the rate and magnitude of carbon (C) sequestration in biomass and soils following afforestation of cropland. Two oak (Quercus robur) and four Norway spruce (Picea abies) afforestation chronosequences (age range 1 to 90 years) were studied with respect to C sequestration in Denmark, Sweden and the Netherlands.

Biomass C sequestration ranged between 2.7 and 4.6 Mg C ha-1 yr-1 for stands younger than 45 years with no clear influence of different site characteristics. Such effects were probably masked by the soil enrichment, which is a legacy of former agriculture. Biomass C sequestration differed more between sites after 40-50 years owing to different management, tree species-specific growth patterns and less influence of former fertilization.

For the total soil compartment studied, i.e. forest floor and mineral soil 0-25 cm, afforestation of cropland as a minimum resulted in unchanged soil C contents and in most cases led to net C sequestration. Rates of soil C sequestration ranged from being negligible in two of the Danish chronosequences to 1.3 Mg C ha-1 yr-1 for the Dutch chronosequence. The allocation of sequestered soil C was also quite different among chronosequences. While forest floor development consistently led to C sequestration, there was no general pattern in mineral soil C sequestration. In the short term (30 years), tree species had little influence on total soil C sequestration. Afforestation of nutrient-poor sandy soils seemed to result in larger C sequestration in forest floors and the whole soil than afforestation of nutrient-rich, clayey soils.

For the afforested ecosystem as a whole, the general contribution of soils to C sequestration (i.e. to a net gain in C stock) was about one third of the total C sequestration. The contribution of soil varied among the chronosequences from none to 31%, which is not far from reported contributions of soil in similar studies. In the short term (30-40 years), total C sequestration was higher in Norway spruce than in oak whereas soil type did not clearly influence the rate of C sequestration.

The work in AFFOREST has improved the knowledge of C sequestration in afforested cropland. The new results may help to bridge the gap between existing knowledge and policy demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bashkin, M. A., & Binkley, D. (1998). Changes in soil carbon following afforestation in Hawaii. Ecology, 79, 828-833.

    Article  Google Scholar 

  • Bastrup-Birk, A., Hansen, K., Ro-Poulsen, H., Jørgensen, B. B., Mikkelsen, T., Pilegaard, K., & Bille-Hansen, J. (2003). Biomasse og produktion. Næringsstofkredsløb i skove - Ionbalanceprojektet (Ed. K. Hansen). Forest and Landscape Research, 33, 69-96. Ministry of the Environment, Danish Forest and Landscape Research Institute, Hørsholm, Denmark. (In Danish).

    Google Scholar 

  • Billings, W. D. (1938). The structure and development of shortleaf pine stands and certain associated physical properties of soil. Ecological Monographs, 8, 437-499.

    Article  Google Scholar 

  • Binkley, D. (1995). The influence of tree species on forest soils: Processes and patterns. Proceeding of the Trees and Soil Workshop. Lincoln University, 28 February-2 March 1994 (Eds. D. J. Mead & I. S. Cornforth), pp. 1-33. Canterbury, New Zealand: Lincoln University Press.

    Google Scholar 

  • Binkley, D., & Resh, S. C. (1999). Rapid changes in soils following Eucalyptus afforestation in Hawaii. Soil Science Society of America Journal, 63, 222-225.

    Article  CAS  Google Scholar 

  • Bouwman, A. F., & Leemans, R. (1995). The role of forest soils in the global carbon cycle. Carbon forms and functions in forest soils (Eds. W. F. McFee & F. M. Kelly), pp. 503-525. Madison, Wisconsin, USA: Soil Science Society of America.

    Google Scholar 

  • Brandel, G. (1990). Volume functions for individual trees. Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pendula & Betula pubescens). Swedish University of Agricultural Sciences, Department of Forest Yield Research, Report No. 26. 183 pp. (In Swedish with English summary).

    Google Scholar 

  • Christensen, B. T. (1992). Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, 20, 1-89.

    Google Scholar 

  • Compton, J. E., & Boone, R. D. (2000). Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology, 81, 2314-2330.

    Article  Google Scholar 

  • Del Galdo, I., Six, J., Peressotti, A., & Cotrufo, M. F. (2003). Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 9, 1204-1213.

    Article  Google Scholar 

  • Denef, K., Six, J., Merckx, R., & Paustian, K. (2004). Carbon Sequestration in Microaggregates of No-Tillage Soils with Different Clay Mineralogy. Soil Science Society of America Journal, 68, 1935-1944.

    Article  CAS  Google Scholar 

  • Dewar, R. C., & Cannell, M. G. R. (1992). Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiology, 11, 49-71.

    PubMed  CAS  Google Scholar 

  • Dick, W. A. (1983). Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Science Society of America Journal, 47, 102-107.

    Article  CAS  Google Scholar 

  • Dziadowiec, H. (1987). The decomposition of plant litter fall in an oak-linden-hornbeam forest and an oak-pine mixed forest of the Bialowieza National Park. Acta Societatis Botanicorum Poloniae, 56, 169-185.

    Google Scholar 

  • France, E. A., Binkley, D., & Valentine, D. (1989). Soil chemistry changes after 27 years under four tree species in southern Ontario. Canadian Journal of Forest Research, 19, 1648-1650.

    CAS  Google Scholar 

  • Garcia-Oliva, F., & Masera, O. R. (2004). Assessment and measurement issues related to soil carbon sequestration in land-use, land-use change, and forestry (LULUCF) projects under the Kyoto Protocol. Climatic Change, 65, 347-364.

    Article  CAS  Google Scholar 

  • Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8, 345-360.

    Article  Google Scholar 

  • Hagedorn, F., Maurer, S., Egli, P., Blaser, P., Bucher, J. B., & Siegwolf, R. (2001). Carbon sequestration in forest soils: effects of soil type, atmospheric CO2 enrichment, and N deposition. European Journal of Soil Science, 52, 619-628.

    Article  CAS  Google Scholar 

  • Hagen-Thorn, A., Callesen, I, Armolaitis, K., & NihlgÃ¥rd, B. (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management, 195, 373-384.

    Article  Google Scholar 

  • Hamburg, S. P. (1984). Effects of forest growth on soil nitrogen and organic matter pools following release from subsistence agriculture. Forest Soils and Treatment Impacts (Ed. E. L. Stone), pp. 145-158. University of Tennessee, Knoxville.

    Google Scholar 

  • Hassink, J. (1995). Decomposition rate constants of size and density fractions of soil organic matter. Soil Science Society of America Journal, 59, 1631-1635.

    Article  CAS  Google Scholar 

  • Hoekstra, C., & Poelman, J. N. B. (1992). Dichtheid van gronden gemeten aan de meest voorkomende bodemeenheden in Nederland. Stiboka Rapport 1582, Wageningen, The Netherlands. (In Dutch).

    Google Scholar 

  • Homann, P. S., Sollins, P., Chappell, H. N., & Stangenberger, A. G. (1995). Soil organic carbon in a mountainous, forested region: Relation to site characteristics. Soil Science Society of America Journal, 59, 1468-1475.

    Article  CAS  Google Scholar 

  • Hooker, T. D., & Compton, J. E. (2003). Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecology Applications, 13, 299-313.

    Google Scholar 

  • Illerup, J. B, Lyck, E., Nielsen, M., Winther, M., Mikkelsen, M. H., Hoffmann, L., Gyldenkærne, S., Sørensen, P., Vesterdal, L., Fauser, P., & Thomsen, M. (2005). Denmark’s National Inventory Report 2005. Submitted under the United Nations Framework Convention on Climate Change 1990-2003. Ministry of Environment, Denmark, National Environmental Research Institute. http://cdr.eionet.eu.int/ dk/Air_Emission_Inventories/Submission_UNFCCC/colql9meg/envql9mfg/NIR_April_2005_DK.doc

    Google Scholar 

  • IPCC. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm

    Google Scholar 

  • Jansen, J. J., Sevenster, J., & Faber, P. J. (1996). Opbrengsttabellen voor belangrijke boomsoorten in Nederland. IBN-rapport 221, Wageningen. (In Dutch).

    Google Scholar 

  • Johannsen, V. K., Jørgensen, B. B., & Morsing, M. (2004). Skovstatistik feltinstruks 2004. Skov & Landskab, KVL. 173 pp. (In Danish).

    Google Scholar 

  • Johnson, D. W. (1992). Effects of forest management on soil carbon storage. Water, Air, and Soil Pollution, 64, 83-120.

    Article  CAS  Google Scholar 

  • Johnston, M. H., Homann, P. S., Engstrom, J. K., & Grigal, D. F. (1996). Changes in ecosystem carbon storage over 40 years on an old-field/forest landscape in east-central Minnesota. Forest Ecology and Management, 83, 17-26.

    Article  Google Scholar 

  • Jug, A., Makeschin, F., Rehfuess, K. E., & Hofmann-Schielle, C. (1999). Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. Forest Ecology and Management, 121, 85-99.

    Article  Google Scholar 

  • Jussy, J. H., Koerner, W., Dambrine, E., Dupouey, J. L., & Benoit, M. (2002). Influence of former agricultural land use on net nitrate production in soils. European Journal of Soil Science, 53, 367-374.

    Article  CAS  Google Scholar 

  • Karlsson, K. (1998). A strategy for reducing the number of sample trees when estimating stand volume on sample plots. Swedish University of Agricultural Sciences, Department of Forest Yield Research, report 43, 18 pp.

    Google Scholar 

  • Krogh, L., Nørgaard, A., Hermansen, M., Greve, M. H., Balstrøm, T., & Breuning-Madsen, H. (2003). Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture, Ecosystems & Environment, 96, 19-28.

    Google Scholar 

  • Kurmies, B. (1949). Humusbestimmung nach dem Biochromatverfahren ohne Kaliumjodid. Zeitschrift für Pflanzenernährung, Dungung und Bodenkunde, 44, 121-125.

    Article  CAS  Google Scholar 

  • Leth, S., & Breuning-Madsen, H. (1992). Changes in soil profile development and nutrient status due to afforestation of agricultural land. Danish Journal of Geography, 92, 70-74.

    Google Scholar 

  • Lettens, S., Van Orshoven, J., van Wesemael, B., & Muys, B. (2004). Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use and Management, 20, 40-47.

    Article  Google Scholar 

  • Madsen, S. F. (1987). Vedmassefunktioner ved forskellige aflægningsgrænser og nøjagtighedskrav for nogle vigtige danske skovtræarter. Det Forstlige Forsøgsvæsen i Danmark, 41, 47-242. (In Danish with English summary: Volume equations for some important Danish tree species. Standard and form class equations. Total and merchantable volumes.)

    Google Scholar 

  • Madsen, S. F., & Heusérr, M. (1993). Volume and stem-taper functions for Norway spruce in Denmark. Forest & Landscape Research, 1, 51-78.

    Google Scholar 

  • Malhi, Y, Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 22, 715-740.

    Article  CAS  Google Scholar 

  • Marklund, L. G. (1988). Biomass functions for pine, spruce and birch in Sweden. Swedish University of Agricultural Sciences, UmeÃ¥. Dept. of Forest Survey, Report 45, 73 pp. ISSN 0348-0496. (In Swedish with English summary.)

    Google Scholar 

  • Matejovic, I. (1993). Determination of carbon, hydrogen, and nitrogen in soils by automated elemental analysis (dry combustion method). Communications in Soil Science and Plant Analysis, 24, 2213-2222.

    Article  CAS  Google Scholar 

  • McNabb, D. H., Cromack, K., & Fredriksen, R. L. (1986). Variability of nitrogen and carbon in surface soils of six forest types in the Oregon Cascades. Soil Science Society of America Journal, 50, 1037-1041.

    Article  Google Scholar 

  • Nabuurs, G.-J., & Mohren, G. M. J. (1995). Modelling analysis of potential carbon sequestration in selected forest types. Canadian Journal of Forest Research, 25, 1157-1172.

    CAS  Google Scholar 

  • Näslund, M. (1936). Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden frÃ¥n Statens Skogsförsöksanstalt, 29, 1-169. (In Swedish).

    Google Scholar 

  • Olesen, J. E., Andersen, J. M., Jacobsen, B. H., Hvelplund, T., Jørgensen, U., Schou, J. S., Graversen, J., Dalgaard, T., & Fenhann, J. V. (2001). Kvantificering af tre tiltag til reduktion af landbrugets emission af drivhusgasser. DJF Rapport Markbrug nr. 48, Danish Institute of Agricultural Sciences, Foulum, Denmark. (In Danish with English summary).

    Google Scholar 

  • Paul, E. A., Morris, S. J., Six, J., Paustian, K., & Gregorich, E. G. (2003). Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Science Society of America Journal, 67, 1620-1628.

    Article  CAS  Google Scholar 

  • Paul, K. I., Polglase, P. J., Nyakuengama, J. G., & Khanna, P. K. (2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168, 241-257.

    Article  Google Scholar 

  • Pedersen, L. B., & Bille-Hansen, J. (1999). A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecology and Management, 114, 55-70.

    Article  Google Scholar 

  • Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6, 317-327.

    Article  Google Scholar 

  • Powlson, D. S., Smith, P., Coleman, K., Smith, J. U., Glendining, M. J., Körschens, M., & Franko, U. (1998). A European network of long-term sites for studies on soil organic matter. Soil and Tillage Research, 47, 263-274.

    Article  Google Scholar 

  • Pregitzer, K. S., & Palik, B. J. (1997). Change in ecosystem carbon 46 years afte establishing red pine (Pinus resinosa Ait.) on abandoned agricultural land in the Great Lakes Region. In Soil organic matter in temperate agroecosystems: long-term experiments in North America (Eds. E. A. Paul, K. Paustian, E. T. Elliott & C. V. Cole), pp. 263-270. New York: CRC Press.

    Google Scholar 

  • Quiroga, A. R., Buschaiazzo, D. E., & Peinemann, N. (1996). Soil organic matter particle size fractions in soils of the semiarid Argentinian pampas. Soil Science, 161, 104-107.

    Article  CAS  Google Scholar 

  • Richter, D. D., Markewitz, D., Trumbore, S. E., & Wells, C. G. (1999). Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400, 56-58.

    Article  CAS  Google Scholar 

  • Rodriguez-Murillo, J. C. (2001). Organic carbon content under different types of land use and soil in peninsular Spain. Biology and Fertility of Soils, 33, 53-61.

    Article  CAS  Google Scholar 

  • Romanya, J., Cortina, J., Falloon, P., Coleman, K., & Smith, P. (2000). Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils. European Journal of Soil Science, 51, 627-641.

    Article  Google Scholar 

  • Römkens, P. F. A. M., van der Pflicht, J., & Hassink, J. (1999). Soil organic matter dynamics after the conversion of arable land to pasture. Biology and Fertility of Soils, 28, 277-284.

    Article  Google Scholar 

  • Rosenqvist, L., & Johansson, M.-B. (2005). Carbon sequestration and fluxes of dissolved organic carbon in a chronosequence of Norway spruce forest planted on former arable land. Manuscript in preparation. SAS Institute (1993). SAS/STAT User’s Guide Rel. 6.07. Cary, North Carolina, USA: SAS Institute Inc.

    Google Scholar 

  • Schiffman, P. M. & Johnson, W. C. (1989). Phytomass and detrital carbon storage during forest regrowth in the southeastern United States Piedmont. Canadian Journal of Forest Research, 19, 69-78.

    Google Scholar 

  • Schimel, D. S., Coleman, D. C., & Horton, K. A. (1985). Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma, 36, 201-214.

    Article  Google Scholar 

  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176.

    Article  CAS  Google Scholar 

  • Smith, K.A. (1999). After the Kyoto Protocol: Can soil scientists make a useful contribution? Soil Use and Management, 15, 71-75.

    Article  CAS  Google Scholar 

  • Soil Survey Staff (1992). Keys to Soil Taxonomy, 5th Edition. SMSS technical monograph no. 19. Blacksburg, Virginia: Pocahontas Press, Inc.

    Google Scholar 

  • Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65-105.

    Article  Google Scholar 

  • Thuille, A., Buchmann, N., & Schulze, E.-D. (2000). Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiology, 20, 849-857.

    PubMed  Google Scholar 

  • Van Veen, J. A., & Kuikman, P. J. (1990). Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 11, 213-233.

    Article  Google Scholar 

  • Vejre, H., Callesen, I., Vesterdal, L., & Raulund-Rasmussen, K. (2003). Carbon and nitrogen in Danish forest soils - contents and distribution determined by soil order. Soil Science Society of America Journal, 67, 335-343.

    Article  CAS  Google Scholar 

  • Vesterdal, L., & Raulund-Rasmussen, K. (1998). Forest floor chemistry under seven tree species along a soil fertility gradient. Canadian Journal of Forest Research, 28, 1636-1647.

    Article  CAS  Google Scholar 

  • Vesterdal, L., Ritter, E., & Gundersen, P. (2002). Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 169, 137-143.

    Article  Google Scholar 

  • Vogt, K. A., Grier, C. C., & Vogt, D. J. (1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377.

    Article  Google Scholar 

  • Voroney, R. P., Van Veen, J. A., & Paul, E. A. (1981). Organic C dynamics in grassland soils. 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Canadian Journal of Soil Science, 61, 211-224.

    Article  Google Scholar 

  • Westman, C. J. (1995). A simple device for sampling of volumetric forest soil cores. Silva Fennica, 29, 247-251.

    Google Scholar 

  • Winjum, J. K., & Schroeder, P. E. (1997). Forest plantations of the world: their extent, ecological attributes, and carbon storage. Agricultural and Forest Meteorology, 84, 153-167.

    Article  Google Scholar 

  • Yanai, R. D., Arthur, M. A., Siccama, T. G., & Federer, C. A. (2000). Challenges of measuring forest floor organic matter dynamics: Repeated measures from a chronosequence. Forest Ecology and Management, 138, 273-283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Vesterdal, L., Rosenqvist, L., Van Der Salm, C., Hansen, K., Groenenberg, BJ., Johansson, MB. (2007). Carbon Sequestration in Soil and Biomass Following Afforestation: Experiences from Oak and Norway Spruce Chronosequences in Denmark, Sweden and the Netherlands. In: Heil, G.W., Muys, B., Hansen, K. (eds) Environmental Effects of Afforestation in North-Western Europe. Plant and Vegetation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4568-9_2

Download citation

Publish with us

Policies and ethics