Skip to main content

Abstract

Plants are exposed to several environmental stresses, that adversely affect metabolism, growth and yield. Yet, plants are also known to adapt to these stress conditions by modulating their metabolism and physiology. These stress factors include abiotic (drought, salinity, light, CO2, soil nutrients and temperature) and biotic (bacteria, fungi, viruses and insects) components. Among abiotic factors, non-optimal light intensity and temperature can be considered as the most serious limiting factors which limit the growth and yield of plants (Foyer, 2002; Reddy et al., 2004). Also, environmental fluctuations often result in ‘stress’ which ultimately limit the overall plant performance. The consequences of environmental stresses on the whole plant are quite complex, dealing with structural and metabolic functions. Understanding plant responses to the external environments is of greater significance for making crops stress tolerant. One of the most deleterious effect of environmental stress on plants is “oxidative stress” in cells, which is characterized by the accumulation of potential harmful reactive oxygen species (ROS) in tissues. Photooxidative stress in plants is mostly induced by the absorption of excess excitation energy leading to over-reduction of the electron transport chains generating ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamska, I (1997) ELIPs: Light-induced stress proteins. Physiol. Planta. 100, 794–805.

    CAS  Google Scholar 

  • Agrawal, G. K., Jwa, N-S. and Rakwal, R. (2002). A pathogen-induced novel rice Oryza sativa L.) gene encodes a putative protein homologous to type II glutathione S-transferases. Plant Sci. 163, 1153–1160.

    Article  CAS  Google Scholar 

  • Allen, R. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107, 1049–1054.

    PubMed  CAS  Google Scholar 

  • Alscher, R. G., Erturk, N., and Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. M., Chow, W. S. and Park, Y. I. (1995). The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth. Res. 46, 129–139.

    Article  CAS  Google Scholar 

  • Aro, E.M., McCaffery, S. and Anderson, J. M. (1993). Photoinhibition and D1 Protein degradation in peas acclimated to different growth irradiances. Plant Physiol. 103, 835–843.

    PubMed  CAS  Google Scholar 

  • Aro, E.M., Suorsa, M., Rokka, A., Allahverdiyeva, Y., Paakkarinen, V., Saleem, A., Battchikova, N. and Rintamäki, E. (2005). Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J. Exp. Bot. 56, 347–356.

    PubMed  CAS  Google Scholar 

  • Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 601–640.

    CAS  Google Scholar 

  • Assmann, S. M. (1993). Signal transduction in guard cells. Ann. Rev. Cell Biol. 9, 345–75.

    PubMed  CAS  Google Scholar 

  • Baena-González, E., Baginsky, S., Mulo, P., Summer, H., Aro, E-M. and Link, G. (2001). Chloroplast transcription at different light intensities. Glutathione-mediated phosphorylation of the major RNA polymerase involved in redox-regulated organellar gene expression. Plant Physiol. 127, 1044–1052.

    PubMed  Google Scholar 

  • Baier, M. and Dietz, K. J. (1999). Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis: evidence from transgenic Arabidopsis. Plant Physiol. 119, 1407–1414.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, S., Horton, P. and Walters, R. G. (2004). Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218, 793–802.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, S., Walters, R. G., Jansson, S. P. and Horton, P. (2001). Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213, 794–801.

    Article  PubMed  CAS  Google Scholar 

  • Bassi, R., Sandona, D. and Croce, R. (1997). Novel aspects of chlorophyll a/b-binding proteins. Physiol. Planta. 100, 769–779.

    CAS  Google Scholar 

  • Bergantino, E., Brunetta, A., Touloupakis, E., Segella, A., Szabo, I. and Glacometti, G. M. (2003). Role of PSII-H subunit in photo protection. Novel aspects of D1 turnover in Synechocystis 6803. J. Biol. Chem. 278, 41820–41829.

    Article  PubMed  CAS  Google Scholar 

  • Bergatino, E., Sandona, D., Cugini, D. and Bassi, R. (1998). The photo system II subunit CP29 can be phosphorylated in both C3 and C4 plants as suggested by sequence analysis. Plant Mol. Biol. 36, 11–22.

    Google Scholar 

  • Björkman, O. and Demmig-Adams, B. (1994). Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Ecophysiology of photosynthesis (Schulze, E-D. and M. M. Caldwell eds.) Springer-Verlag, pp. 17–47.

    Google Scholar 

  • Björkman, O. and Powles, S. B. (1981). Leaf movement in the shade species Oxalis oregano. I. Response to light level and light quality. Carnegie Year Book 80, 59–62.

    Google Scholar 

  • Boekema, E. J., Van Roon, H., Calkoen, H., Bassi, R. and Dekker, J. P. (1999). Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemsitry 38, 2233–2239.

    CAS  Google Scholar 

  • Bowler, C., Montagu, M. V. and Inzé, D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116.

    Article  CAS  Google Scholar 

  • Braidot, E., Petrussa, E., Vianello, A. and Macrì, F. (1999). Hydrogen peroxide generation by higher plant mitochondria oxidizing complex I or complex II substrates. FEBS Lett. 451, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Breusegem, F.V., Montagu, M. V. and Inzé, D. (2002). Engineering stress tolerance in maize. In: Oxidative stress in plants. (Inzé, D. and M. V. Montago eds.) New York, USA: Taylor and Francis Publishers, pp. 191–215.

    Google Scholar 

  • Bueno, P. and del Rio, L. A. (1992). Purification and properties of glyoxisomal cuprozinc superoxide dismutase from watermelon cotyledons (Citrullus vulgaris Schrad.) Plant Physiol. 98, 331–336.

    Article  CAS  PubMed  Google Scholar 

  • Burton, G. W., Joyce, A. and Ingold, K. U. (1982). First proof that vitamin E is major lipid-soluble, chain-breaking antioxidant in human bloods plasma. The Lancet 2, 327.

    CAS  Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. J., Montagu, M. V., Inzé, D. and Van Camp, W. (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA 95, 5818–5823.

    Article  PubMed  CAS  Google Scholar 

  • Conklin, P. L. (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 24, 383–394.

    Article  CAS  Google Scholar 

  • Corpas, F.J., Barroso, J. B. and del Río, L. A. (2001). Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Creissen, G., Broadbent, P., Stevens, R., Wellburn, A. R. and Mullineaux, P. (1996). Manipulation of glutathione metabolism in transgenic plants. Biochem. Soc. Trans. 24, 465–469.

    PubMed  CAS  Google Scholar 

  • Das, V.S.R. (2004). Photosynthesis: Regulation under varying light regimes . Science Publishers, Inc., USA.

    Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. and Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57, 779–795.

    Article  PubMed  CAS  Google Scholar 

  • Davey, M. W., Montagu, M. V. and Inzé, D. (2002). Ascorbate metabolism and stress. In: Oxidative stress in plants (Inzé, D. and M. V. Montago eds.), New York, USA: Taylor and Francis Publishers, pp. 271–296.

    Google Scholar 

  • Demmig-Adams, B. and Adams III, W. W. (1992). Photo protection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599–626.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams III, W. W. (1996). The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1, 21–26.

    Google Scholar 

  • Demmig-Adams, B., Adams III, W.W. and Mattoo, A. K. 2005. Photoprotection, photoinhibition, gene regulation and environment. In: Advances in photosynthesis and respiration , Springer, NY (in press).

    Google Scholar 

  • Dietz, K.J., Lamkemeyer, P., Finkemier, I., Li, W. X., Kahmann, U., Stork, T. and Baier, M. (2004). The function of chloroplast peroxiredoxins in peroxide detoxification and redox signaling in contect of photosynthesis. In: Photosynthesis: Fundamental aspects to global perspectives , (van der Est, A. and Bruce, D. eds.), Proceedings of International Society of Photosynthesis, ACG Publishing, KS, USA.

    Google Scholar 

  • Edge, R., McGarvey, D. J. and Truscott, T. G. (1997). The carotenoids as antioxidants- a review. J. Photochem. Photobiol. 41, 189–200.

    CAS  Google Scholar 

  • Edreva, A. (2005a). Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agri. Ecosyst. Environ. 106, 119–133.

    CAS  Google Scholar 

  • Edreva, A. (2005b). The importance of non-photosynthetic pigments and cinnamic acid derivatives in photoprotection. Agri. Ecosyst. Environ. 106, 135–146.

    CAS  Google Scholar 

  • Foyer, C. H. (2002). The contribution of photosynthetic oxygen metabolism to oxidative stress in plants. In: Oxidative stress in plants (Inzé, D. and M. V. Montago eds.), New York, USA: Taylor and Francis Publishers, pp. 33–68.

    Google Scholar 

  • Foyer, C. H. and Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytol. 146, 359–388.

    Article  CAS  Google Scholar 

  • Foyer, C. H. and Noctor, G. (2001). The Molecular Biology and Metabolism of glutathione, In: Significance of Glutathione in plant adaptation to the environment (Grill, D., M. Tausz and L. De Kok eds.) Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 27–57.

    Google Scholar 

  • Foyer, C. H., Lelandais, M. and Kunert, K. J. (1994). Photooxidative stress in plants. Physiol. Planta. 92, 696–717.

    CAS  Google Scholar 

  • Fryer, M. J. (1992). The antioxidant effects of thylakoid Vitamin E (á-tocopherol). Plant Cell Env. 15, 381–392.

    CAS  Google Scholar 

  • German, A. A. and Rodgers, M. A. (1992). Current perspectives of singlet oxygen detection in biological environments. J. Photochem. Photobiol. 14, 159–176.

    Google Scholar 

  • Grace, S. C. and Logan, B. A. (1996). Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol. 112, 1631–1640.

    PubMed  CAS  Google Scholar 

  • Grant, J. J. and Loake, G. J. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Guan, L. and Scandalios, J. G. (1998). Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol. 117, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Hager, A. (1969). Lichtbedingte pH-Erniedrigung in eniem Chloroplasten-Kompartiment als Ursache der Enzymatischen Violaxanthin-Zu Zeaxanthin-Umwandlung; Beziehungen Zur Photophos phorylierung. Planta 89, 224–243.

    Article  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J. M. C. (1999). Free Radicals in biology and Medicine. Oxford: Oxford University Press.

    Google Scholar 

  • Hammond-Kosack, K.E. and Jones, J. D. G. (1996). Resistance gene-dependent plant defense responses. Plant Cell 8, 1773–1791.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, W. (1990). Chloroplasts movement. Plant Cell Environ. 13, 595–614.

    Google Scholar 

  • Havaux, M. and Niyogi, K. K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA 96, 8762–8767.

    Article  PubMed  CAS  Google Scholar 

  • Hieber, A. D., Kawabata, O. and Yamamoto, H. Y. (2004). Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by psbS overexpression in tobacco and i n-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. Plant Cell Physiol. 45, 92–102.

    Article  PubMed  CAS  Google Scholar 

  • Hippeli, S., Heiser, I. and Elstner, E. F. (1999). Activated Oxygen and Free Oxygen radicals in pathology: new insights and analogies between animals and plants. Plant Physiol. Biochem. 37, 167–178.

    Article  CAS  Google Scholar 

  • Hofmann, B., Hecht, H. J. and Flohe, L. (2002). Peroxiredoxins. Biol. Chem. 383, 347–364.

    PubMed  CAS  Google Scholar 

  • Hutin, C., Nussaume, L., Moise, N., Moya, I., Kloppstech, K. and Havaux, M. (2003). Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl. Acad. Sci. USA 100, 4921–4926.

    Article  PubMed  CAS  Google Scholar 

  • Jackowski, G., Olkiewicz, P. and Zelisko, A. (2003). The acclimative response of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHC II) to elevated irradiances at the level of trimeric subunits. J. Photochem. Photobiol. 70, 163–170.

    CAS  Google Scholar 

  • Jansson, S., Andersson, J., Kim, S. J. and Jackowski, G. (2000). An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol. Biol. 42, 145–151.

    Article  Google Scholar 

  • Jespersen, H. M., Kjaersgard, I. V. H., Ostergaard, L. and Welinder, K. G. (1997). From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem. J. 326, 305–310.

    PubMed  CAS  Google Scholar 

  • Jiao, D. and Ji, B. H. (1996). Changes of the photosynthetic electron transport and photosynthetic enzyme activities of two rice varieties under photooxidation conditions. Acta. Agron. Sin. 22, 43–49.

    Google Scholar 

  • Jiao, D., Emmanuel, H. and Guikema, J. A. (2004). High light stress inducing photoinhibition and protein degradation of photosystem I in Brassica rapa. Plant Sci. 167, 733–741.

    Article  CAS  Google Scholar 

  • Jiao, D., Huang, X., Li, X., Chi, W., Kuang, T., Zhang, Q., Ku, M. S. B. and Cho, D. (2002). Photosynthetic cahrateristics and tolerance to photooxidation of transgenic rice expressing C4 photosynthetic enzymes. Photosynth. Res. 72, 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, A., Hernández, J. A., del Rio, L. A. and Sevilla, F. (1997). Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 14, 275–284.

    Google Scholar 

  • Jimenez, A., Hernández, J. A., Pastori, G., del Rio, L. A. and Sevilla, F. (1998). Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 118, 1327–1335.

    Article  PubMed  CAS  Google Scholar 

  • Karpinski, S., Escobar, C., Karpinska, B., Creissen, G. and Mullineaux, P. (1997). Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9, 627–40.

    Article  PubMed  CAS  Google Scholar 

  • Karpinski, S., Reynolds, H., Karpinski, B., Wingsle, G., Creissen, G. and Mullineaux, P. (1999). Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 645–657.

    Article  Google Scholar 

  • Keren, N., Ohad, I., Rutherford, A. W., Drepper, F. and Krieger-Liszkay, A. (2000). Inhibition of photosystem II activity by saturating single turnover flashes in calcium-depleted and active photosystem II. Photosynth. Res. 63, 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Kettunen, R., Tystjarvi, E. and Aro, E. M. (1996). Degradation pattern of photo system II reaction center protein D1 In intact leaves, the major photo inhibition-induced cleavage site in D1 polypeptide is located amino terminally of the DE loop. Plant Physiol. 111, 1183–1190.

    Article  PubMed  CAS  Google Scholar 

  • Knox, J.P. and Dodge, A. D. (1985). Singlet oxygen and plants. Phytochemistry 24, 889–896.

    Article  CAS  Google Scholar 

  • Kok, B. (1956). On the inhibition of photosynthesis by intense light. Biochem. Biophys. Acta. 21, 234–244.

    PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W-L., Tena, G. and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97, 2940–2945.

    Article  PubMed  CAS  Google Scholar 

  • Kozaki, A. and Takeba, G. (1996). photorespiration protects C3 plants from photoinhibition. Nature 384, 557–560.

    Article  CAS  Google Scholar 

  • Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. J. Exp. Bot. 56, 337–346.

    PubMed  CAS  Google Scholar 

  • Kumar, S., Pareek, S. L. S., Reddy, M. K. and Sopory, S. K. (2003). Glutathione: Biosynthesis, homeostasis and its role in abiotic stress. J. Plant Biol. 30, 179–187.

    Google Scholar 

  • Kwon, S.Y., Jeong, Y. J., Lee, H. S., Kim, J. S., Cho, K. Y., Allen, R. D. and Kwak, S. S. (2002). Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplast against methyl viologen-mediated oxidative stress. Plant Cell Environ. 25, 873–882.

    Article  Google Scholar 

  • Lam, E., Kato, N. and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853.

    Article  PubMed  CAS  Google Scholar 

  • Li, X-P., Phippard, A., Pasari, J. and Niyogi, K. K. (2002). Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct. Plant Biol. 29, 1131–1139.

    Article  Google Scholar 

  • Liebler, D. C., Kling, D. S. and Reed, D. J. (1986). Antioxidant protection of phospholipids bilayers by a-tocopherol. Control of á-tocopherol status by ascorbic acid and glutathione. J. Biol. Chem. 261 , 12114–12119.

    PubMed  CAS  Google Scholar 

  • Long, S. P. and Humphries, S. (1994). Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 633–662.

    Article  CAS  Google Scholar 

  • Loyall, L., Uchida, K., Braun, S., Furuya, M. and Frohnmeyer, H. (2000). Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell. 12, 1939–1950.

    Article  PubMed  CAS  Google Scholar 

  • Ludlow, M. M. and Björkman, O. (1984). Paraheliotropic leaf movement in Siratro as a protective mechanism against drought induce damage to primary photosynthetic reactions: damage by excessive light and heat. Planta 161, 505–518.

    Article  Google Scholar 

  • Luna, C. M., Pastori, G. M., Driscoll, S., Groten, K., Bernard, S. and Foyer, C. H. (2005). Drought controls on HOaccumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 56, 417–423.

    PubMed  CAS  Google Scholar 

  • Masi, A., Ghisi, R. and Ferretti, M. (2002). Measuring low-molecular weight thiols by detecting the fluorescence of their SBD-derivatives: application to studies of diurnal and UV-B induced changes in Zea mays L. J. Plant Physiol. 159, 499–507.

    Article  CAS  Google Scholar 

  • Matsubara, S., Naumann, M., Martin, R., Nichol, C., Rascher, U., Morosinotto, T., Bassi, R. and Osmond, B. (2005). Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may ‘lock-in’ lutein-based photoprotection during acclimation to strong light. J. Exp. Bot. 56, 461–468.

    PubMed  CAS  Google Scholar 

  • McCord, J. M. and Fridovich, I. (1969). Superoxide dismutase. An enzymatic function for erythrocuprein (Hemocuprein). J. Biol. Chem. 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  • McDonald, M. S. (2003). In: Photobiology of higher plants. UK: John Wiley & Sons.

    Google Scholar 

  • McKersie, B. D. and Leshem, Y. Y. (1994). In: Stress and stress coping in cultivated plants, Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa, Y., Tamoi, M. and Shigeoka, S. (2000). Evaluation of the defence system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plant expressing catalase from Escherichia coli. Plant Cell Physiol. 41, 311–320.

    PubMed  CAS  Google Scholar 

  • Miyake, C. and Yokota, A. (2000). Determination of the rate of photoreduction of O2in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol. 41, 335–343.

    PubMed  CAS  Google Scholar 

  • Mohamed, E. A., Iwaki, T., Munir, I., Tamoi, M., Shigeoka, S. and Wadano, A. (2003). Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photooxidative stress tolerance. Plant Cell Environ. 26, 2037–2046.

    Article  CAS  Google Scholar 

  • Mohr, H. and Schopfer, P. (1995). The leaf as a photosynthetic system. In: Plant Physiology, Berlin, Heidelberg and New York: Springer-Verlag, pp. 225–243.

    Google Scholar 

  • Møller, I. M. (2001). Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561–591.

    PubMed  Google Scholar 

  • Muller, M., Weidner, W., de Kok, L. J. and Tausz, M. (2002). Differential effects of H2S on cytoplasmic and nuclear thiol concentrations in different tissues of Brassica roots. Plant Physiol. Biochem. 40, 585–589.

    CAS  Google Scholar 

  • Mullineaux, P. and Karpinski, S. (2002). Signal transduction in response to excess light: getting out of chloroplast. Curr. Opin. Plant Biol. 5, 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux, P., Karpinski, S., Jimenez, A., Cleary, S. P., Robinson, C. and Creissen, G. (1998). Identification of cDNAs encoding plastids-targeted glutathione peroxidase. Plant J. 13, 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Murchie, E. H., Hubbart, S., Chen, Y., Peng, S. and Horton, P. (2002). Acclimation of Rice Photosynthesis to Irradiance under Field Conditions. Plant Physiol. 130, 1999–2010.

    Article  PubMed  CAS  Google Scholar 

  • Neill, S. J., Desikan, R. and Hancock, J. T. (2002). Hydrogen peroxide signaling. Plant Biol. 5, 338–395.

    Google Scholar 

  • Neill, S. J., Desikan, R. and Hancock, J. T. (2003). Nitric oxide signaling in plants. New Phytol. 159, 11–35.

    Article  CAS  Google Scholar 

  • Niyogi, K. K. (1999). Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333–359.

    Article  PubMed  CAS  Google Scholar 

  • Niyogi, K. K. (2000). Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3, 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Niyogi, K. K., Li, X-P., Rosenberg, V. and Jung, H-S. (2005). Is psbS the site of non-photochemical quenching in photosynthesis? J. Exp. Bot. 56, 375–382.

    PubMed  CAS  Google Scholar 

  • Noctor G., Veljiovic-Jovanovic, S., Driscoll, S., Novitskaya, L. and Foyer, C.H. (2002). Drought and oxidative load in the leaves of C3plants:a predominant role for photorespiration? Ann. Bot, 89, 41–50.

    Article  CAS  Google Scholar 

  • Noctor, G., Dutilleul, C., De Paepe, R. and Foyer, C. H. (2004). Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. J. Exp. Bot. 55, 49–57.

    PubMed  CAS  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H. and Foyer, C. H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53, 1283–1304.

    PubMed  CAS  Google Scholar 

  • Ogawa, K., Kanematsu, S., Takabe, K. and Asada, K. (1995). Attachment of Cu/Zn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PS1) in spinach chloroplasts: detection by immuno-gold labeling after rapid freezing and substitution method. Plant cell Physiol. 36, 565–573.

    CAS  Google Scholar 

  • Oquist, G. nad Huner, N.P. (2003). Photosynthesis of overwintering evergreen plants. Ann. Rev. Plant Biol. 54, 329–355.

    Google Scholar 

  • Ort, D. R. (2001). When there is too much light. Plant Physiol. 125, 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Ort, D. R. and Baker, N. R. (2002). A photoprotective role for O2as an alternative electron sink in photosynthesis? Curr. Opin. Plant Biol. 5, 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Osmond, C. B., Anderson, J. M., Ball, M. C. and Egerton, J. J. G. (1999). Compromising efficiency: the molecular ecology of light resource utilization in terrestrial plants. In: Advances in Physiological Plant Ecology, (Press, M.C., J. D. Scholes and M. G. Barker eds.) Oxford: Blackwell Science, pp. 1–24.

    Google Scholar 

  • Padh, H. (1990). Cellular functions of ascorbic acid. Biochem. Cell Biol. 68, 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y. I., Chow, W. S., Anderson, J. M. and Hurry, V. M. (1996). Differential susceptibility of photosystem II to light stress in light-acclimated pea leaves depends on the capacity of photochemical and non-radiative dissipation of light. Plant Sci. 115, 137–149.

    Article  CAS  Google Scholar 

  • Pastenes, C., Porter, V., Baginsky, C., Horton, P. and Gonzàlez, J. (2004). Paraheliotropism can protect water-stressed bean (Phaseolus vulgaris L.) plants against photoinhibition. J. Plant Physiol. 161, 1315–1323.

    Article  PubMed  CAS  Google Scholar 

  • Payton, P., Webb, R., Kornyeyev, D., Allen, R. and Holaday, A. S. (2001). Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J. Exp. Bot. 52, 2345 – 2354.

    Article  PubMed  CAS  Google Scholar 

  • Pearcy, R.W. (1998) Acclimation to sun and shade. In: Photosynthesis (Raghavendra, A. ed.), Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pearcy, R.W. (1999). Responses of plants to heterogeneous light environments. In: Handbook of functional plant ecology, (Pugnaire, F.I.; Valladares, F. eds.), Marcel Dekker, NY, pp. 269–314.

    Google Scholar 

  • Perl-Treves, R. and Perl, A. (2002). Oxidative stress: an introduction. In: Oxidative stress in plants (Inzè, D. and M. V. Montago eds.), New York, USA: Taylor and Francis Publishers, pp. 1–32.

    Google Scholar 

  • Pignocchi, C. and Foyer, C. H. (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr. Opin. Plant Biol. 6, 379–389.

    Article  PubMed  CAS  Google Scholar 

  • Polle, A. (1997). Defense against photooxidative damage in plants. In: Oxidative stress and molecular biology of antioxidant defenses, (Scandalios, J.G. ed.), New York: Cold Spring Harbor Laboratory, Cold Spring Habor, USA, pp. 623–666.

    Google Scholar 

  • Prasil, O., Adir, N. and Ohad, I. (1992). Dynamics of photosystem II: mechanism of photoinhibition and recovery process. In: Topics in photosynthesis, the photosystems: structure, function and molecular biology, (Barber, J. ed.), Amsterdam: Elsevier, pp. 220–250.

    Google Scholar 

  • Price, G.D., von Caemmerer, S., Evans, J. R., Siebke, K., Anderson, J. M. and Badger, M. R. (1998). Photosynthesis is strongly reduced by antisense suppression of chloroplastic cytochrome bf complex in transgenic tobacco. Aust. J. Plant Physiol. 25, 445–452.

    Article  CAS  Google Scholar 

  • Pursiheimo, S., Martinsuo, P., Rintamaki, E. and Aro, E-M. (2003). Photosystem II protein phosphorylation fallows four distinctly different regulatory patterns induced by environmental cues. Plant Cell Environ. 26, 1995–2003.

    Article  CAS  Google Scholar 

  • Purvis, A. C. (1997). Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Planta 100, 165–170.

    CAS  Google Scholar 

  • Reddy, A.R., Chaitanya, K. V. and Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161, 1189–1202.

    Article  CAS  Google Scholar 

  • Rontani, J-F., de Rabourdin, A., Pinot, F., Kandel, S. and Aubert, C. (2005). Visible light-induced oxidation of unsaturated components of cutins: a significant process during the senescence of higher plants. Phytochemistry 66, 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Rossel, J. B., Wilson, I. W. and Pogson, B. J. (2002). Global change in gene expression in response to high light in Arabidopsis. Plant Physiol. 130, 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Salisbury, F. B. and Ross, C. W. (1992). Photosynthesis: environmental and agricultural aspects. In: Plant Physiology, Belmont, CA: Wadsworth, pp. 249–265.

    Google Scholar 

  • Scandalios J.G. (1997). Molecular genetics of superoxide dismutases in plants. In: Oxidative stress and the molecular biology of antioxidant defenses, (Scandalios J.G. ed.), Cold Spring Harbour LaboaratoryPress, Cold Spring Harbour, pp. 527–568.

    Google Scholar 

  • Schinkel, H., Streller, S. and Wingsle, G. (1998). Multiple forms of extracellular superoxide dismutase in needles stem tissues and seeds of Scots pine. J. Exp. Bot. 49, 931–936.

    Article  CAS  Google Scholar 

  • Schmidt, M., Dehne, S., and Feierabend, J. (2002). Post-translational mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA. Plant J. 31, 601–613.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and dessication. New Phytol. 125, 27–58.

    CAS  Google Scholar 

  • Smirnoff, N. and Cumbes, Q. J. (1989). Hydroxy radical scavenging activity of compatible solutes. Phytochemistry 28, 1057–1060.

    Article  CAS  Google Scholar 

  • Smirnoff, N. and Pallanca, J. E. (1995). Ascorbate metabolism in relation to oxidative stress. Biochem. Soc. Trans. 24, 472–478.

    Google Scholar 

  • Sonoike, K. (1995). Selective Photoinhibition of photosystem I In isolated thylakoid membrane from cucumber and spinach. Plant Cell Physiol. 36, 825–830.

    CAS  Google Scholar 

  • Sonoike, K. (1996). Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species. Plant Sci. 115, 157–164.

    Article  CAS  Google Scholar 

  • Suh, H. J., Kim, C. S. and Jung, J. (2000). Cytochrome b 6 f complex as an indigenous photodynamic generator of singlet oxygen in thylakoid membranes. Photochem. Photobiol. 71, 101–109.

    Google Scholar 

  • Sundar, D., Perianayaguy, P. and Reddy, A.R. (2004). Localization of antioxidant enzymes in the cellular compartments of sorghum leaves. Plant Grow. Reg. 44, 157–163.

    CAS  Google Scholar 

  • Tausz, M., Sircelj, H. and Grill, D. (2004). The glutathione system as a stress marker in plant ecophysiology. Is a stress response concept valid? J. Exp. Bot. 55, 1955–1962.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, B. S., Belenghi, B. and Levine, A. (2002). Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 128, 1271–1281.

    Article  PubMed  CAS  Google Scholar 

  • Tjus, S. E., Moller, B. L. and Scheller, H. V. (1999). Photoinhibition of photosystem I damages both reaction center proteins PSI-A and PSI-B and acceptor-side located small photosystem I. Photosynth. Res. 60, 75–86.

    CAS  Google Scholar 

  • Torel, J., Cillard, J. and Cillard, P. (1986). Antioxidant activity of flavonoids and reactivity with peroxy radicals. Phytochemistry 25, 383–385.

    Article  CAS  Google Scholar 

  • Vaidyanathan, H., Sivakumar, P., Chakrabarty, R. and Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - Differential responses in salt-tolerant and sensitive varieties. Plant Sci. 165, 1411–1418.

    Article  CAS  Google Scholar 

  • Vainello, A. and Macri, F. (1991). Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. J. Bioenerg. Biomembr. 23, 409–423.

    Google Scholar 

  • Vernoux, T., Sanchez-Fernandez, R. and May, M. (2002). Glutathione biosynthesis in plants. In: Oxidative stress in plants, (Inzè, D. and M. V. Montago eds.), New York, USA: Taylor and Francis Publishers, pp. 297–311.

    Google Scholar 

  • Walters, R. G. (2005). Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 56, 435–447.

    PubMed  CAS  Google Scholar 

  • Walters, R.G., Roger, J. J., Shephard, F. and Horton, P. (1999). Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209, 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Wingsle, G. and Karpinski, S. (1996). Differential redox regulation by glutathione of glutathione reductase and CuZn superoxide dismutase genes expression in Pinus sylvestris (L.) needles. Planta 198, 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5, 218–223.

    Article  PubMed  CAS  Google Scholar 

  • Yabuta, Y., Motoki, T., Yoshimura, K., Takeda, T., Ishikawa, T. and Shigeoka, S. (2002). Thylakoid membrane-bound ascorbate peroxidase in a limiting factor of antioxidative system under photooxidative stress. Plant J. 32, 915–925.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Mri, H. and Nishimura, M. (1995). A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membrane sin pumpkin. Plant Cell Physiol. 36, 1157–1162.

    PubMed  CAS  Google Scholar 

  • Yamasaki, H., Takahashi, S. and Hesiki, R. (1999). The tropical fig Ficus microcarpa L. f. cv. Golden Leaves lacks heat-stable dehydroascorbate activity. Plant Cell Physiol. 40, 640–646.

    CAS  Google Scholar 

  • Yashimura, K., Yabuta, Y., Ishikawa, T. and Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzyme in response to oxidative stresses. Plant Physiol. 123, 223–234.

    Google Scholar 

  • Yuting, C., Ronglian, Z., Zhongjian, J. and Young, J. (1990). Flavonoids as superoxide scavengers and antioxidants. Free Rad. Biol. Med. 9, 19–21.

    Google Scholar 

  • Zeng, Q-Y., Lu, H. and Wang, X-R. (2005). Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae). Biochemie 87, 445–455.

    Article  CAS  Google Scholar 

  • Zhang, N. and Portis, A. R. (1999). Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA 96, 9438–9443.

    PubMed  CAS  Google Scholar 

  • Zhang, S., Weng, J., Pan, J., Tu, T., Yao, S. and Xu, C. H. (2003). Study on the photogeneration of superoxide radicals in photosystem II with EPR spin trapping techniques. Photosynth. Res. 75, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, D. and Scandalios, J. G. (1993). Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family. Proc. Natl. Acad. Sci. USA 90, 9310–9314.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

REDDY, A.R., RAGHAVENDRA, A.S. (2006). PHOTOOXIDATIVE STRESS. In: Madhava Rao, K., Raghavendra, A., Janardhan Reddy, K. (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4225-6_6

Download citation

Publish with us

Policies and ethics