Skip to main content

Formal Methods for Modeling Biological Regulatory Networks

  • Chapter
Modern Formal Methods and Applications

Summary

This chapter presents how the formal methods can be used to analyse biological regulatory networks, which are at the core of all biological phenomena as, for example, cell differentiation or temperature control. The dynamics of such a system, i.e. its semantics, is often described by an ordinary differential equation system, but has also been abstracted into a discrete formalism due to R. Thomas. This second description is well adapted to stateof-the-art measurement techniques in biology, which often provide qualitative and coarse-grained descriptions of biological regulatory networks. This formalism permits us to design a formal framework for analysing the dynamics of biological systems. The verification tools, as model checking, can then be used not only to verify if the modelling is coherent with known biological properties, but also to help biologists in the modelling process. Actually, for a given biological regulatory network, a large class of semantics can be automatically built and model checking allows the selection of the semantics, which are coherent with the biological requirement, i.e. the temporal specification. This modelling process is illustrated with the well studied genetic regulatory network controlling immunity in bacteriophage lambda.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.8 References

  1. V. Bassano and G. Bernot. Marked regulatory graphs: a formal framework to simulate biological regulatory networks with simple automata. In 14’th International Workshop on Rapid System Prototyping, pages 93–99, San Diego, 2003.

    Google Scholar 

  2. G. Bernot, F. Cassez, J.-P. Comet, F. Delaplace, C. Müller, O. Roux, and O.H. Roux. Semantics of biological regulatory networks. In Proceedings of the Workshop on Concurrent Models in Molecular Biology (BioConcur’2003), 2003.

    Google Scholar 

  3. G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. A fruitful application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol., 229(3):339–347, 2004.

    Article  Google Scholar 

  4. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a reimplementation of SMV. In Proceeding of the International Workshop on Software Tools for Technology Transfer (STTT-98), BRICS Notes Series, NS-98-4, pages 25–31, 1998.

    Google Scholar 

  5. O. Cinquin and J. Demongeot. Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol., 216(2):229–241, 2002.

    Article  CAS  Google Scholar 

  6. O. Cinquin and J. Demongeot. Roles of positive and negative feedback in biological systems. C.R.Biol., 325(11):1085–1095, 2002.

    Google Scholar 

  7. H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, S. Tewfik, and J. Geiselmann. Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol., 66(2):301–340, 2004.

    Article  Google Scholar 

  8. E.A. Emerson. Handbook of theoretical computer science, Volume B: formal models and semantics, chapter Temporal and modal logic, pages 995–1072. MIT Press, 1990.

    Google Scholar 

  9. A.F. Filippov. Differential equations with discontinuous right-hand sides. Kluwer Academic Publishers, 1988.

    Google Scholar 

  10. L. Glass and S.A. Kauffman. The logical analysis of continuous non linear biochemical control networks. J. Theor. Biol., 39(1):103–129, 1973.

    Article  CAS  Google Scholar 

  11. J.-L. Gouzé and S. Tewfik. A class of piecewise linear differential equations arising in biological models. Dynamical Syst., 17:299–316, 2003.

    Article  Google Scholar 

  12. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid systems. Software Tools for Technology Transfer, 1:110–122, 1997.

    Article  Google Scholar 

  13. M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press, 2000.

    Google Scholar 

  14. B.J. Kuipers. Qualitative reasoning: modeling and simulation with incomplete knowledge. MIT Press, 1994.

    Google Scholar 

  15. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

    Google Scholar 

  16. L. Mendoza, D. Thieffry, and E.R. Alvarez-Buylla. Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analysis. Bioinformatics, 15(7–8):593–606, 1999.

    Article  CAS  Google Scholar 

  17. S. Pérès and J.-P. Comet. Contribution of computational tree logic to biological regulatory networks: example from pseudomonas aeruginosa. In International workshop on Computational Methods in Systems Biology, volume 2602 of LNCS, pages 47–56, February 24–26, 2003.

    Google Scholar 

  18. E. Plathe, T. Mestl, and S.W. Omholt. Feedback loops, stability and multistationarity in dynamical systems. J. Biol. Syst., 3:569–577, 1995.

    Article  Google Scholar 

  19. L. Sánchez and D. Thieffry. A logical analysis of the drosophila gapgene system. J. Theor. Biol., 211(2):115–141, 2001.

    Article  CAS  Google Scholar 

  20. L. Sánchez, J. van Helden, and D. Thieffry. Establishment of the dorsoventral pattern during embryonic development of drosophila melanogaster: a logical analysis. J. Theor. Biol., 189(4):377–389, 1997.

    Article  Google Scholar 

  21. S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., 31(1):64–68, 2002.

    Article  CAS  Google Scholar 

  22. E.H. Snoussi. Qualitative dynamics of a piecewise-linear differential equations: a discrete mapping approach. Dynamics and stability of Systems, 4:189–207, 1989.

    Google Scholar 

  23. E.H. Snoussi. Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst., 6:3–9, 1998.

    Article  Google Scholar 

  24. E.H. Snoussi and R. Thomas. Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol., 55(5):973–991, 1993.

    Article  Google Scholar 

  25. C. Soulé. Graphical requirements for multistationarity. ComPlexUs, 1:123–133, 2003.

    Article  Google Scholar 

  26. D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda. Bull. Math. Biol., 57(2):277–297, 1995.

    Article  CAS  Google Scholar 

  27. R. Thomas. Logical analysis of systems comprising feedback loops. J. Theor. Biol., 73(4):631–656, 1978.

    Article  CAS  Google Scholar 

  28. R. Thomas. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. Springer Series in Synergies 9, pages 180–193, 1980.

    Google Scholar 

  29. R. Thomas and R. d’Ari. Biological Feedback. CRC Press, 1990.

    Google Scholar 

  30. R. Thomas, A.M. Gathoye, and L. Lambert. A complex control circuit. Regulation of immunity in temperate bacteriophages. Eur. J. Biochem., 71(1):211–227, 1976.

    Article  CAS  Google Scholar 

  31. R. Thomas and M. Kaufman. Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11:180–195, 2001.

    Article  Google Scholar 

  32. R. Thomas, D. Thieffry, and M. Kaufman. Dynamical behaviour of biological regulatory networks-I. Biological role of feedback loops an practical use of the concept of the loop-characteristic state. Bull. Math. Biol., 57(2):247–276, 1995.

    Article  CAS  Google Scholar 

  33. E.O. Voit. Computational Analysis of biochemical systems: a practical guide for biochemists and molecular biologists. Cambridge University Press, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Richard, A., Comet, JP., Bernot, G. (2006). Formal Methods for Modeling Biological Regulatory Networks. In: Gabbar, H.A. (eds) Modern Formal Methods and Applications. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4223-X_5

Download citation

Publish with us

Policies and ethics