Skip to main content

Plant Metabolism Associated with Resistance and Susceptibility

  • Chapter
Natural Resistance Mechanisms of Plants to Viruses

Abstract

Viruses are subcellular parasites that replicate within a host cell with no intervening membrane to insulate host and viral gene products from each other (Hull, 2002). The highly intimate nature of this relationship suggests that the biochemical and physiological processes occurring in the various host cell types through which a virus must propagate will significantly affect the outcome of the infection. In plants, drastic alterations in, and redirection of, host metabolism have been observed in many studies of both incompatible and compatible host-virus interactions. However, is it safe to suggest that these changes in plant metabolism influence whether a plant is resistant or susceptible to the virus infection? The answer to this question is important for a number of reasons. Firstly, it will lead to a better general understanding of the plant-virus interaction. Secondly, it may reveal mechanisms underlying induced resistance phenomena. Finally, it may allow us to identify targets for novel, artificial methods of inducing resistance to plant viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affourtit, C., Krab, K. and Moore A.L. (2001). Control of plant mitochondrial respiration. BBA-Bioenergetics 1504: 58–69.

    PubMed  CAS  Google Scholar 

  • Affourtit, C., Albury, M.S.W., Crichton, P.G. and Moore, A.L. 2002. Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett. 510: 121–126.

    PubMed  CAS  Google Scholar 

  • ap Rees, T. 1994. Plant physiology. Virtue on both sides. Current Biology 4: 557–559.

    PubMed  CAS  Google Scholar 

  • ap Rees, T., Fuller, W.A. and Wright, B.W. 1976. Pathways of carbohydrate oxidation during thermogenesis by the spadix of Arum maculatum. Bioch. Biophys. Acta 473: 22–35.

    Google Scholar 

  • Aranda, M. and Maule, A. 1998. Virus-induced host gene shutoff in animals and plants. Virology 243: 261–7.

    PubMed  CAS  Google Scholar 

  • Aranda, M.A., Escaler, M., Wang, D. and Maule, A.J. 1996. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc. Natl. Acad. Sci. U S A. 93: 15289–93.

    PubMed  CAS  Google Scholar 

  • Aranda, M.A., Escaler, M., Thomas, C.L. and Maule, A.J. 1999. A heat shock transcription factor in pea is differentially controlled by heat and virus replication. Plant J. 20: 153–61.

    PubMed  CAS  Google Scholar 

  • Banerjee, N. and Zaitlin, M. 1992. Import of tobacco mosaic virus coat protein into intact chloroplasts in vitro. Molec. Plant-Microbe Interact. 5: 466–471.

    CAS  Google Scholar 

  • Banerjee, N., Wang, J.-Y. and Zaitlin, M. 1995. A single nucleotide change in the coat protein gene of tobacco mosaic virus is involved in the induction of severe chlorosis. Virology 207: 234–239.

    PubMed  CAS  Google Scholar 

  • Barón, M., Rahoutei, J., Lázaro, J.J. and García-Luque, I. 1995. PSII response to biotic and abiotic stress. In Photosynthesis: from Light to Biosphere, Vol IV, pp. 897–900 Mathis, P. ed. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Bartel, D.P. 2004. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116: 261–297.

    Google Scholar 

  • Bedbrook, J.R. and Matthews, R.E.F. 1973. Changes in the flow of early products of photosynthetic carbon fixation associated with the replication of TYMV. Virology 53: 84–91.

    PubMed  CAS  Google Scholar 

  • Blua, M.J., Perring, T.M. and Madore, M.A. 1994. Plant virus-induced changes in aphid population development and temporal fluctuations in plant nutrients. J. Chem. Ecol. 20: 691–707.

    CAS  Google Scholar 

  • Bolas, B.D. and Bewley, W.F. 1930. Aucuba or yellow mosaic of tomato: a note on metabolism. Nature 126: 471.

    CAS  Google Scholar 

  • Carr, J.P. 2004. ‘Tobacco mosaic virus.’ In Plant-Pathogen Interactions (Ed. N.J. Talbot). Annu. Plant Rev. 11: 27–67. Blackwell Publishers, Oxford.

    Google Scholar 

  • Caspar, T., Huber, S.C. and Somerville, C. 1985. Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol. 79: 11–17.

    PubMed  CAS  Google Scholar 

  • Chivasa, S., Murphy, A. M., Naylor, M. and Carr, J. P. 1997. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9: 547–557.

    PubMed  CAS  Google Scholar 

  • Chivasa, S. and Carr, J. P. 1998. Cyanide restores N gene mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10: 1489–1498.

    PubMed  CAS  Google Scholar 

  • Chivasa, S., Berry, J.O., ap Rees, T. and Carr, J.P. 1999. Changes in gene expression during development and thermogenesis in Arum. Aust. J. Plant Physiol. 26: 391–399.

    CAS  Google Scholar 

  • Cohen, J. and Loebenstein, G. 1975. An electron microscope study of starch lesions in cucumber cotyledons infected with tobacco mosaic virus. Phytopathology 65: 32–39.

    Google Scholar 

  • Diener, T.O. 1963. Physiology of virus-infected plants. Annu. Rev. Phytopathol. 1: 197–218.

    CAS  Google Scholar 

  • Doke, N. and Hirai, T. 1970. Radioautographic studies on the photosynthetic CO2 fixation in virus-infected leaves. Phytopathology 60: 988–991.

    Google Scholar 

  • Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chetrit, P., Foyer, C.H. and de Paepe, R. 2003. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15: 1212–1226.

    PubMed  CAS  Google Scholar 

  • Durrant, W.E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev.Phytopathol. 42: 185–209.

    PubMed  CAS  Google Scholar 

  • Ehara, Y. and Misawa, T. (1975) Occurrence of abnormal chloroplasts in tobacco leaves infected systemically with the ordinary strain of cucumber mosaic virus. Phytopathol. Z. 84, 233–252.

    Google Scholar 

  • Escaler, M., Aranda, M.A., Thomas, C.L. and Maule, A.J. 2000. Pea embryonic tissues show common responses to the replication of a wide range of viruses. Virology 267: 318–25.

    PubMed  CAS  Google Scholar 

  • Funayama, S., Sonoike, K. and Terashima, I. 1997. Photosynthetic properties of leaves of Eupatorium makinoi infected by a geminivirus. Photosynth. Res. 53, 253–261.

    CAS  Google Scholar 

  • Gamalei, Y.V. 1989. Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3: 96–110.

    Google Scholar 

  • Gamalei, Y.V. 1991. Phloem loading and its development related to plant evolution from trees to herbs. Trees 5: 50–64.

    Google Scholar 

  • Gilliland, A., Singh, D.P., Hayward, J.M., Moore, C.A., Murphy, A.M., York, C.J., Slator, J. and Carr, J.P. 2003. Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus. Plant Physiol. 132: 1518–1528.

    PubMed  CAS  Google Scholar 

  • Goodman, R.N., Király, Z. and Wood, K.R. 1986. The Biochemistry and Physiology of Plant Disease. University of Missouri Press, Columbia, MO, USA.

    Google Scholar 

  • Gunasinghe, U.B. and Berger, P.H. 1991. Association of potato virus-Y gene-products with chloroplasts in tobacco. Mol. Plant-Microbe Interact. 4: 452–457.

    CAS  Google Scholar 

  • Handford, M.G. 2000. Host factors and virus infection of Arabidopsis thaliana. Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  • Haritatos, E., Medville, R. and Turgeon, R. 2000. Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211: 105–11.

    PubMed  CAS  Google Scholar 

  • Herbers, K., Meuwly, P., Frommer, W.B., Métraux, J.-P. and Sonnewald, U. 1996a. Systemic acquired resistance mediated by the ectopic expression of invertase: Possible hexose sensing in the secretory pathway. Plant Cell 8: 793–803.

    PubMed  CAS  Google Scholar 

  • Herbers, K., Meuwly, P., Métraux, J.-P. and Sonnewald, UU. 1996b Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett. 397: 239–244.

    PubMed  CAS  Google Scholar 

  • Hodgson, R.A.J., Beachy, R.N. and Pakrasi, H.B. 1989. Selective inhibition of photosystem II in spinach by tobacco mosaic virus: an effect of the viral coat protein. FEBS Lett. 245: 267–270.

    PubMed  CAS  Google Scholar 

  • Holmes, F.O. 1931. Local lesions of mosaic in Nicotiana tabacum L. Contrib. Boyce Thompson Inst. 3: 163–172.

    Google Scholar 

  • Honda, Y. and Matsui, C. 1974. Electron microscopy of cucumber mosaic virus-infected tobacco leaves showing mosaic symptoms. Phytopathology 64: 534–539.

    Google Scholar 

  • Hršel, I. 1962. The electron microscopic investigation of changes in cytoplasmic structures in leaves of Cucumis sativa L. infected with cucumber virus 4. Biol. Plantarum 4: 232–238.

    Google Scholar 

  • Hull, R. 2002. Matthews’ Plant Virology. 4th Edition, Academic Press, NY.

    Google Scholar 

  • Izaguirre-Mayoral, M.L., Carballo, O. and Gil, F. 1990. Purification and partial characterisation of isometric virus-like particles in Kalanchoe species. J. Phytopathol. 130: 303–311.

    Google Scholar 

  • Jensen, S.G. 1967. Photosynthesis, respiration and other physiological relationships in barley infected with barley yellow dwarf virus. Phytopathology. 58: 204–208.

    Google Scholar 

  • Ji, L.-H. and, Ding, S.-W. 2001. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol. Plant-Microbe Interact. 14: 715–24.

    PubMed  CAS  Google Scholar 

  • Kachroo, P., Yoshioka, K., Shah, J., Dooner, H.K. and Klessig, D.F. 2000. Resistance to turnip crinkle virus in arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12: 677–690.

    PubMed  CAS  Google Scholar 

  • Lacomme, C. and Roby, D. 1999. Identification of new early markers of the hypersensitive response in Arabidopsis thaliana. FEBS Lett. 459: 149–153.

    PubMed  CAS  Google Scholar 

  • Laties, G.L. 1982. The cyanide-resistant, alternative path in plant mitochondria. Annu. Rev.Plant Physiol. 33: 519–555.

    CAS  Google Scholar 

  • Leal, N. and Lastra, R. 1984. Altered metabolism of tomato plants infected with tomato yellow mosaic virus. Physiol. Plant Pathol. 24: 1–7.

    Google Scholar 

  • Lehto, K., Tikkanen, M., Hiriart, J.B., Paakkarinen, V. and Aro, E.M. 2003. Depletion of the photosystem II core complex in mature tobacco leaves infected by the Flavum strain of tobacco mosaic virus. Mol. Plant-Microbe Interact. 16: 1135–1144.

    PubMed  CAS  Google Scholar 

  • Lennon, A.M., Neuenschwander, U.H., Ribas-Carbo, M., Giles, L., Ryals, J.A. and Siedow, J.N. 1997. The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol. 115: 783–791.

    PubMed  CAS  Google Scholar 

  • Magyarosy, A.C., Buchanan, B.B. and Schürmann, P. 1973. Effect of a systemic virus infection on chloroplast function and structure. Virology 55: 426–438.

    PubMed  CAS  Google Scholar 

  • Malamy, J., Carr, J.P., Klessig, D.F. and Raskin, I. 1990. Salicylic acid-A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004.

    CAS  Google Scholar 

  • Martinez, C., Pons, E., Prats, G. and Leon, J. 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J. 37: 209–217.

    PubMed  CAS  Google Scholar 

  • Matthews, R.E.F. 1991. Plant Virology, 3rd edition. Academic Press, NY.

    Google Scholar 

  • Maxwell, D.P., Wang, Y. and McIntosh, L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Nat. Acad. Sci. USA 96: 8271–8276.

    PubMed  CAS  Google Scholar 

  • Maxwell, D.P., Nickels, R. and McIntosh, L. 2002. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J. 29: 269–279.

    PubMed  CAS  Google Scholar 

  • Mayers, C.N., Lee, K.-C., Moore, C.A., Wong, S.-K. and Carr, J.P. 2005. Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: Contrasting mechanisms of induction and antiviral action. Molec. Plant-Microbe Interact. 18:428–434.

    CAS  Google Scholar 

  • Métraux J.-P., Signer, H., Ryals, J., Ward, E., Wyssbenz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004–1006.

    Google Scholar 

  • Métraux, J.-P. (2002). Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci. 7: 332–4.

    PubMed  Google Scholar 

  • Meeuse, B.J.D. and Raskin, I. 1988. Sexual reproduction in the Arum lily family, with emphasis on thermogenicity. Sexual Plant Reproduction 1: 3–15.

    Google Scholar 

  • Moore, A.L., Albury, M.S., Crichton, P.G. and Affourtit, C. 2002. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci. 7: 478–481.

    PubMed  CAS  Google Scholar 

  • Murphy, A.M., Chivasa, S., Singh, D.P. and Carr, J.P. 1999. Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways? Trends Plant Sci. 4: 155–160.

    PubMed  Google Scholar 

  • Murphy, A.M., Gilliland, A., Wong, C.E., West, J., Singh, D.P. and Carr, J.P. 2001. Signal transduction in resistance to plant viruses. Eur. J. Plant Pathol. 107: 121–128.

    CAS  Google Scholar 

  • Murphy, A.M. and Carr, J.P. 2002. Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. Plant Physiol. 128: 552–563.

    PubMed  CAS  Google Scholar 

  • Murphy, A.M., Gilliland, A., York, C.J., Hyman, B. and Carr, J.P. 2004. High-level expression of alternative oxidase protein sequences enhances the spread of viral vectors in resistant and susceptible plants. J. Gen. Virol. 85: 3777–3786.

    PubMed  CAS  Google Scholar 

  • Naderi, M. and Berger, P.H. 1997. Effects of chloroplast targeted potato virus Y coat protein on transgenic plants. Physiol. Mol. Plant Pathol. 50: 67–83.

    CAS  Google Scholar 

  • Naidu, R.A., Krishnan, M., Ramanujam, P., Gnanam, A. and Nayudu, M.V. 1984. Studies on peanut green mosaic virus infected peanut (Arachis hypogea L.) leaves I. Photosynthesis and photochemical reactions. Physiol. Plant Pathol. 25: 181–190.

    CAS  Google Scholar 

  • Nelson, R.S. and van Bel, A.J.E. 1998. The mystery of virus trafficking into, through and out of the vascular tissue. Prog. Bot. 59: 476–533.

    Google Scholar 

  • Norman, C., Howell, K.A., Millar, A.H., Whelan, J.M. and Day, D.A. 2004. Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol. 134: 492–501.

    PubMed  CAS  Google Scholar 

  • Ordog, S. H., Higgins, V. J. and Vanlerberghe, G. C. 2002. Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response. Plant Physiol. 129: 1858–1865.

    PubMed  CAS  Google Scholar 

  • Palukaitis, P. and García-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62: 241–323.

    PubMed  CAS  Google Scholar 

  • Pennazio, S. 1996. Respiration in systemically virus-infected plants. Petria 6: 1–10.

    Google Scholar 

  • Porter, C.A. 1959. Biochemistry of plant virus infection. Adv. Virus Res. 6: 75–91.

    CAS  Google Scholar 

  • Porter, C.A. and Weinstein, L.H. 1957. Biochemical changes induced by thiouracil in cucumber mosaic virus-infected and non-infected tobacco plants. Contrib. Boyce Thompson Inst. 19: 87–106.

    CAS  Google Scholar 

  • Raskin, I., Ehman, A., Melander, W.R., and Meeuse, B.J.D. 1987. Salicylic acid: A natural inducer of heat production in Arum lilies. Science 237: 1601–1602.

    CAS  Google Scholar 

  • Raskin, I., Turner, I.M. and Melander, W.J. 1989. Regulation of heat production in the inflorescence of an Arum lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. USA 86: 2214–2218.

    PubMed  CAS  Google Scholar 

  • Reinero, A. and Beachy, R.N. 1986. Association of TMV coat protein with chloroplast membranes in virus-infected leaves. Plant Mol. Biol. 6: 291–301.

    CAS  Google Scholar 

  • Reinero, A. and Beachy, R.N. 1989. Reduced photosystem II activity and accumulation of viral coat protein in chloroplasts of leaves infected with tobacco mosaic virus. Plant Physiol. 89, 111–116.

    PubMed  CAS  Google Scholar 

  • Rhoads, D.M. and McIntosh, L. 1992. Salicylic acid regulation of respiration in higher plants-alternative oxidase expression. Plant Cell 4: 1131–1139.

    PubMed  CAS  Google Scholar 

  • Rhoads, D.M. and McIntosh, L. 1993. Cytochrome and alternative pathway respiration in tobacco-effects of salicylic acid. Plant Physiol. 103: 877–883.

    PubMed  CAS  Google Scholar 

  • Roberts, P.L. and Wood, K.R. 1982. Effects of a severe (P6) and a mild (W) strain of cucumber mosaic virus on tobacco leaf chlorophyll, starch and cell ultrastructure. Physiol. Plant Pathol. 21: 31–37.

    CAS  Google Scholar 

  • Robinson, S.A, Yakir, D., Ribas-Carbo, M., Giles, L., Osmond, C.B., Siedow, J.N. and Berry, J.A. 1992. Measurement of the engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoe daigremontiana with the use of online oxygen isotope discrimination. Plant Physiol. 100: 1087–1091.

    PubMed  CAS  Google Scholar 

  • Sakano, K. 2001. Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int. Rev. Cytol. 206: 1–44.

    PubMed  CAS  Google Scholar 

  • Samuel, G. 1934. The movement of tobacco mosaic virus within the plant. Ann. appl. Biol. 21: 90–111.

    Google Scholar 

  • Seaton, G.G.R., Hurry, V.M. and Rohozinski, J. 1996. Novel amplification of nonphotochemical chlorophyll fluorescence quenching following viral infection in Chlorella. FEBS Lett. 389, 319–323.

    PubMed  CAS  Google Scholar 

  • Selman, I.W., Brierley, M.R., Pegg, G.F. and Hill, T.A. 1961. Changes in the free amino acids and amides in tomato plants inoculated with tomato spotted wilt virus. Ann. appl. Biol. 49, 601–615.

    CAS  Google Scholar 

  • Siedow, J.N. and Moore, A.L. 1993. A kinetic model for the regulation of electron transfer through the cyanide-resistant pathway in plant mitochondria. Biochim. Biophys. Acta 1142: 165–174.

    CAS  Google Scholar 

  • Simons, B.H., Millenaar, F.F., Mulder, L., van Loon, L.C. and Lambers, H. 1999. Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv. tomato. Plant Physiol. 120: 529–538.

    PubMed  CAS  Google Scholar 

  • Singh, D..P, Moore, C.A., Gilliland, A. and Carr, J.P. 2004. Activation of multiple antiviral defence mechanisms by salicylic acid. Molec. Plant Path. 5: 57–63.

    CAS  Google Scholar 

  • Surplus, S.L., Jordan, B.R., Murphy, A.M., Carr, J.P., Thomas, B, and Mackerness, S. A.-H. 1998. Ultraviolet-B-induced responses in Arabidopsis thaliana: Role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant, Cell Environ. 21: 685–694.

    CAS  Google Scholar 

  • Técsi, L.I., Maule, A.J., Smith, A.M. and Leegood, R.C. 1994a. Complex, localized changes in CO2 assimilation and starch content associated with the susceptible interaction between cucumber mosaic virus and a cucurbit host. Plant J. 5: 837–847.

    Google Scholar 

  • Técsi, L.I., Maule, A.J., Smith, A.M. and Leegood, R.C. 1994b. Metabolic alterations in cotyledons of Cucurbita pepo infected by cucumber mosaic virus. J. Exp. Bot. 45: 1541–1551.

    Google Scholar 

  • Técsi, L.I., Smith, A.M., Maule, A.J. and Leegood, R.C. 1995. Physiological studies of a viral mosaic infection. In Physiological Responses of Plants to Pathogens: Aspects of Applied Biology, Vol. 42, pp. 133–140. Walters, D.R., Scholes, J.D., Bryson, R.J., Paul, N.D. and McRoberts, N. (eds.) Association of Applied Biologists, Wellesbourne, UK.

    Google Scholar 

  • Técsi, L.I., Smith, A.M., Maule, A.J. and Leegood, R.C. 1996. A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with cucumber mosaic virus. Plant Physiol. 111: 975–985.

    PubMed  Google Scholar 

  • Truernit, E. 2001. The importance of sucrose transporters. Curr. Biol. 11:R169–R171.

    PubMed  CAS  Google Scholar 

  • Umbach A. L. and Siedow J. N. 1993. Covalent and non-covalent dimers of the cyanideresistanct alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol. 103: 845–854.

    PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C. and McIntosh, L. 1997. Alternative oxidase: From gene to function. Annu. Rev. Plant Physiol. 48: 703–734.

    CAS  Google Scholar 

  • Wang, D. and Maule, A.J. 1995. Inhibition of host gene expression associated with plant virus replication. Science 267: 229–231.

    CAS  Google Scholar 

  • Welkie, G.W., Yang, S.F. and Miller, G.W. 1967. Metabolite changes induced by cucumber mosaic virus in resistant and susceptible strains of cowpea. Phytopathology. 57: 472–475.

    CAS  Google Scholar 

  • Wildermuth, M.C., Dewdney, J., Wu, G. and Ausubel, F.M. 2002. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562–5. Erratum in: Nature 2002, 417: 571.

    Google Scholar 

  • Wong, C.E. 2001. Signalling in salicylic acid-induced resistance to viruses in Arabidopsis thaliana. PhD Thesis, University of Cambridge.

    Google Scholar 

  • Wong, C. E., Carson, R. A. J. and Carr, J. P. 2002. Chemically induced virus resistance in Arabidopsis thaliana is independent of pathogenesis-related protein expression and the NPR1 gene. Mol. Plant Microbe Interact. 15: 75–81.

    PubMed  CAS  Google Scholar 

  • Xie, Z.X. and Chen, Z.X. 1999. Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol. 120: 217–225.

    PubMed  CAS  Google Scholar 

  • Yip J. Y. H. and Vanlerberghe G. C. 2001. Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake. Physiologia Plant. 112: 327–333.

    CAS  Google Scholar 

  • Zaitlin, M. and Hull, R. 1987. Plant virus-host interactions. Annu. Rev. Plant Physiol. 38, 291–315.

    Google Scholar 

  • Zechmann, B., Müller, M. and Zellnig, G. 2003. Cytological modification in zucchini yellow mosaic virus (ZYMV) infected Styrian pumpkin plants. Arch. Virol. 148, 1119–1133.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Handford, M.G., Carr, J.P. (2006). Plant Metabolism Associated with Resistance and Susceptibility. In: Loebenstein, G., Carr, J.P. (eds) Natural Resistance Mechanisms of Plants to Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3780-5_14

Download citation

Publish with us

Policies and ethics