Skip to main content

Elicitation of isoflavan phytoalexins

  • Chapter
Lotus japonicus Handbook

Abstract

Lotus japonicus makes a good model legume species for the study of induced isoflavonoid phytoalexin biosynthesis. As part of its defence response against pathogens, Lotus leaves have been reported to produce a number of isoflavans, a specific class of isoflavonoids. Model systems for Lotus elicitation have been set up using the thiol reagent reduced glutathione as elicitor and the accumulation of phytoalexins has been monitored by analysis of vestitol, which is excreted into the media. In this article, we present two protocols for the elicitation of Lotus leaves and three methods for the analysis of the induced isoflavan vestitol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki T, Akashi T, and Ayabe S. (2000) Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis. Journal of Plant Research 113, 475–488.

    Google Scholar 

  • Bonde MR, Millar RL, and Ingham JL (1973) Induction and identification of sativan and vestitol as two phytoalexins from Lotus corniculatus. Phytochemistry 12, 2957–2959.

    Article  CAS  Google Scholar 

  • Di Carlo G, Mascolo N, Izzo AA, and Capasso F. (1999) Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sciences 65, 337–353.

    PubMed  Google Scholar 

  • Dixon RA, Harrison MJ, and Paiva NL (1995) The isoflavonoid phytoalexin pathway-from enzymes to genes to transcription factors. Physiologia Plantarum 93, 385–392.

    Article  CAS  Google Scholar 

  • Dixon RA and Steele CL (1999) Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends in Plant Science 4, 394–400.

    Article  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, and Wang LJ. (2002) The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology 3, 371–390.

    Article  CAS  Google Scholar 

  • Edwards R, Blount JW, and Dixon RA. (1991) Glutathione and elicitation of the phytoalexin response in legume cell-cultures. Planta 184, 403–409.

    Article  CAS  Google Scholar 

  • Forkmann G, and Martens S. (2001) Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology 12, 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Handberg K, and Stougaard J. (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular-genetics. The Plant Journal 2, 487–496.

    Article  Google Scholar 

  • Harborne JB, and Williams CA. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481–504.

    Article  CAS  PubMed  Google Scholar 

  • Humphreys JM, and Chapple C. (2000) Molecular ‘pharming’ with plant P450s. Trends in Plant Science 5, 271–272.

    Article  CAS  PubMed  Google Scholar 

  • Ingham JL (1977) Isoflavan phytoalexins from Anthyllis, Lotus and Tetragonolobus. Phytochemistry 16, 1279–1282.

    CAS  Google Scholar 

  • Ingham JL, and Dewick PM. (1979) A new isoflavan phytoalexin from leaflets of Lotus hipidus. Phytochemistry 18, 1711–1714.

    Article  CAS  Google Scholar 

  • Ingham JL, and Dewick PM. (1980) Isolation of a new isoflavan phytoalexin from 2 Lotus species. Phytochemistry 19, 2799–2800.

    CAS  Google Scholar 

  • Ingham JL (1982) Phytoalexins of the Leguminosae In: Phytoalexins, (Bailey JA, and Mansfield, JW Ed.). Glasgow: Blackie. pp. 21–80.

    Google Scholar 

  • Iwashina T. (2000) The structure and distribution of the flavonoids in plants. Journal of Plant Research 113, 287–299.

    CAS  Google Scholar 

  • Koes RE, Quattrocchio F, and Mol JNM. (1994) The flavonoid biosynthetic-pathway in plants-Function and evolution. Bioessays 16, 123–132.

    Article  CAS  Google Scholar 

  • Kuc J. (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annual Review of Phytopathology 33, 275–297.

    Article  CAS  Google Scholar 

  • Lombari P, Ercolano E, El Alaoui H, and Chiurazzi M. (2003) A new transformation-regeneration procedure in the model legume Lotus japonicus: root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation>. Plant Cell Reports 21, 771–777.

    CAS  PubMed  Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, and Parniske M. (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiology 131, 866–871.

    Article  CAS  PubMed  Google Scholar 

  • Robbins MP, Hartnoll J, and Morris P. (1991) Phenylpropanoid defense responses in transgenic Lotus corniculatus. 1. Glutathione elicitation of isoflavan phytoalexins in transformed root cultures. Plant Cell Reports 10, 59–62.

    Article  Google Scholar 

  • Robbins MP, Thomas B, and Morris P. (1995) Phenylpropanoid defense responses in transgenic Lotus corniculatus. 2. Modelling plant defence responses in transgenic root cultures using thiol and carbohydrate elicitors. Journal of Experimental Botany 46, 513–524.

    CAS  Google Scholar 

  • Shimada N, Akashi T, Aoki T, and Ayabe S. (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Science 160, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Shirley BW. (1996) Flavonoid biosynthesis: ‘New’ functions for an ‘old’ pathway. Trends Plant Science 1, 377–382.

    Google Scholar 

  • Stafford HA. (1997) Roles of flavonoids in symbiotic and defence functions in legume roots. Botanical Reviews 63, 27–39.

    Google Scholar 

  • Weisshaar B and Jenkins GI. (1998) Phenylpropanoid biosynthesis and its regulation. Current Opinion in Plant Biology 1, 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Wingate VPM, Lawton MA, and Lamb CJ. (1988) Glutathione causes a massive and selective induction of plant defence genes. Plant Physiology 87, 206–210.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Lanot, A., Morris, P. (2005). Elicitation of isoflavan phytoalexins. In: Márquez, A.J. (eds) Lotus japonicus Handbook. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3735-X_35

Download citation

Publish with us

Policies and ethics