Skip to main content

What We Can Deduce about Metabolism in the Moderate Halophile Chromohalobacter Salexigens from its Genomic Sequence

  • Conference paper
Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arahal, D.R., GarcĂ­a, M.T., Vargas, C., Cánovas, D., Nieto, J.J. and Ventosa, A. (2001) Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int. J. Syst. Evol. Microbiol. 51, 1457–1462.

    PubMed  CAS  Google Scholar 

  • Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N. and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302, 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Azachi, M., Henis, Y., Oren, A., Gurevich, P. and Sarig, S. (1995) Transformation of formaldehyde by Halomonas sp. Can. J. Microbiol. 41, 548–553.

    Article  Google Scholar 

  • Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S., Wincker, P., Ornston, L.N., Weissenbach, J., Marlière, P., Cohen, G.N. and Medigue, C. (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 32, 5766–5779.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L. and Roberts, M.F. (2000) Overexpression, purification, and analysis of complementation behavior of the E. coli SuhB protein: comparison with bacterial and archaeal inositol monophosphatases. Biochemistry 39, 4145–4153.

    PubMed  CAS  Google Scholar 

  • Cronan, J.E. and LaPorte, D. (1996) Tricarboxylic acid cycle and glyoxylate bypass, In: F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter and H.E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. ASM Press, Washington D.C., pp. 206–216.

    Google Scholar 

  • Dimroth, P. and Hilbi, H. (1997). Enzymatic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25, 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, J.L., Bownas, J.L., Niehaus, W.G. and Larson, T.J. (2000) Purification and characterization of glpX-encoded fructose 1,6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J. Bacteriol. 182, 5624–5627.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, M.J. and Fraenkel, D.G. (1979) α-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti. J. Bacteriol. 137, 415–419.

    PubMed  CAS  Google Scholar 

  • Fraenkel, D.G. (1996). Glycolysis, In: F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter and H.E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. ASM Press, Washington D.C., pp. 189–198.

    Google Scholar 

  • Fujita, Y., Yoshida, K.-I., Miwa, Y., Yanai, N., Nagakawa, E. and Kasahara, Y. (1998) Identification and expression of the Bacillus subtilis fructose-1,6-bisphosphatase gene (fbp). J. Bacteriol. 180, 4309–4313.

    PubMed  CAS  Google Scholar 

  • Gottschalk, G. (1985) Bacterial Metabolism. Springer-Verlag, New York.

    Google Scholar 

  • Hanson, T.E. and Tabita, F.R. (2001) A ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl. Acad. Sci. USA 98, 4397–4402.

    Article  PubMed  CAS  Google Scholar 

  • Horn, J.M., Harayama, S. and Timmis, K.N. (1991) DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism. Mol. Microbiol. 5, 2459–2474.

    PubMed  CAS  Google Scholar 

  • Lin, E.C.C. (1996) Dissimilatory pathways for sugars, polyols, and carboxylates, In: F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter and H.E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. ASM Press, Washington D.C., pp. 307–342.

    Google Scholar 

  • Movahedzadeh, F., Rison, S.C.G., Wheeler, P.R., Kendall, S.L., Larson, T.J. and Stokcer, N.G. (2004) The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6-bisphosphatase. Microbiology 150, 3499–3505.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa, T. and Yokota, T. (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: demonstration of two benzoate pathways. J. Bacteriol. 115, 262–267.

    PubMed  CAS  Google Scholar 

  • Pedrosa, F.O. and Zancan, G.T. (1974) L-Arabinose metabolism in Rhizobium japonicum. J. Bacteriol. 119, 336–338.

    PubMed  CAS  Google Scholar 

  • Sangari, F.J., AgĂĽero, J. and GarcĂ­a-Lobo, J.M. (2000) The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology 146, 487–495.

    PubMed  CAS  Google Scholar 

  • Sato, T., Imanaka, H., Rashid, N., Fukui, T., Atomi, H. and Imanaka, T. (2004) Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other thermophiles. J. Bacteriol. 186, 5799–5807.

    Article  PubMed  CAS  Google Scholar 

  • Sekowska, A., Denervaud, V., Ashida, H., Michoud, K., Haas, D., Yokota, A. and Danchin, A. (2004) Bacterial variations on the methionine salvage pathway. BMC Microbiol 4, 9–25.

    Article  PubMed  Google Scholar 

  • Stec, B., Yang, H., Johnson, K.A., Chen, L. and Roberts, M.F. (2000) MJ0109 is an enzyme that is both an inositol monophosphatase and the “missing” archaeal fructose-1,6-bisphosphatase. Nature Struct. Biol. 7, 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K.S., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S. and Olson, M.V. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.

    PubMed  CAS  Google Scholar 

  • Yoshida, K., Yamaguchi, M., Ikeda, H., Omae, K., Tsurusaki, K. and Fujita, Y. (2004) The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase. Microbiology 150, 571–580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Csonka, L.N. et al. (2005). What We Can Deduce about Metabolism in the Moderate Halophile Chromohalobacter Salexigens from its Genomic Sequence. In: Gunde-Cimerman, N., Oren, A., Plemenitaš, A. (eds) Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3633-7_18

Download citation

Publish with us

Policies and ethics