Skip to main content

Tumor Associated Antigens

  • Chapter
Analyzing T Cell Responses

Abstract

The results of an extensive series of studies that were first carried out in the early 1990s have revealed that human tumor reactive T cells recognize a diverse array of antigens. These include antigens expressed in normal tissues, mutated gene products as well as novel epitopes encoded within alternative open reading frames, intronic sequences, as well as the products that result from protein splicing. This antigenic diversity provides opportunities as well as challenges for the development of more effective immunotherapies for the treatment of patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–1647.

    PubMed  Google Scholar 

  2. Coulie PG, Lehmann F, Lethe B, et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A. 1995;92(17):7976–7980.

    PubMed  CAS  Google Scholar 

  3. Wang RF, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med. 1996;183(3):1131–1140.

    Article  PubMed  CAS  Google Scholar 

  4. Rimoldi D, Rubio-Godoy V, Dutoit V, et al. Efficient simultaneous presentation of NYESO-1/LAGE-1 primary and nonprimary open reading frame-derived CTL epitopes in melanoma. J Immunol. 2000;165(12):7253–7261.

    PubMed  CAS  Google Scholar 

  5. Hanada K, Perry-Lalley DM, Ohnmacht GA, Bettinotti MP, Yang JC. Identification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas. Cancer Res. Jul 15 2001;61(14):5511–5516.

    PubMed  CAS  Google Scholar 

  6. Vigneron N, Stroobant V, Chapiro J, et al. An antigenic peptide produced by peptide splicing in the proteasome. Science. Apr 23 2004;304(5670):587–590.

    Article  PubMed  CAS  Google Scholar 

  7. Wang RF, Wang X, Atwood AC, Topalian SL, Rosenberg SA. Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science. 1999;284(5418):1351–1354.

    Article  PubMed  CAS  Google Scholar 

  8. Wang HY, Zhou J, Zhu K, Riker AI, Marincola FM, Wang RF. Identification of a mutated fibronectin as a tumor antigen recognized by CD4+ T cells: its role in extracellular matrix formation and tumor metastasis. J Exp Med. Jun 3 2002;195(11):1397–1406.

    Article  PubMed  CAS  Google Scholar 

  9. Chang CH, Flavell RA. Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J Exp Med. 1995;181(2):765–767.

    Article  PubMed  CAS  Google Scholar 

  10. Chiari R, Hames G, Stroobant V, et al. Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class II molecules. Cancer Res. 2000;60(17):4855–4863.

    PubMed  CAS  Google Scholar 

  11. Maccalli C, Li YF, El-Gamil M, Rosenberg SA, Robbins PF. Identification of a colorectal tumor-associated antigen (COA-1) recognized by CD4(+) T lymphocytes. Cancer Res. Oct 15 2003;63(20):6735–6743.

    PubMed  CAS  Google Scholar 

  12. Hogan KT, Eisinger DP, Cupp SB, 3rd, et al. The peptide recognized by HLA-A68.2-restricted, squamous cell carcinoma of the lung-specific cytotoxic T lymphocytes is derived from a mutated elongation factor 2 gene. Cancer Res. 1998;58(22):5144–5150.

    PubMed  CAS  Google Scholar 

  13. Cox AL, Skipper J, Chen Y, et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science. 1994;264(5159):716–719.

    PubMed  CAS  Google Scholar 

  14. Pieper R, Christian RE, Gonzales MI, et al. Biochemical Identification of a Mutated Human Melanoma Antigen Recognized by CD4(+) T Cells. J Exp Med. 1999;189(5):757–766.

    Article  PubMed  CAS  Google Scholar 

  15. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A. 1997;94(5):1914–1918.

    PubMed  CAS  Google Scholar 

  16. Ayyoub M, Stevanovic S, Sahin U, et al. Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J Immunol. 2002;168(4):1717–1722.

    PubMed  CAS  Google Scholar 

  17. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994;152(1):163–175.

    PubMed  CAS  Google Scholar 

  18. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–219.

    PubMed  CAS  Google Scholar 

  19. Sette A, Vitiello A, Reherman B, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol. 1994;153(12):5586–5592.

    PubMed  CAS  Google Scholar 

  20. Kawakami Y, Eliyahu S, Delgado CH, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A. Apr 26 1994;91(9):3515–3519.

    PubMed  CAS  Google Scholar 

  21. Coulie PG, Brichard V, Van Pel A, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas [see comments]. J Exp Med. 1994;180(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  22. Kawakami Y, Dang N, Wang X, et al. Recognition of shared melanoma antigens in association with major HLA-A alleles by tumor infiltrating T lymphocytes from 123 patients with melanoma. J Immunother. 2000;23(1):17–27.

    PubMed  CAS  Google Scholar 

  23. Valmori D, Fonteneau JF, Lizana CM, et al. Enhanced generation of specific tumorreactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol. 1998;160(4):1750–1758.

    PubMed  CAS  Google Scholar 

  24. Altman JD, Moss PAH, Goulder PJR, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274(5284):94–96.

    Article  PubMed  CAS  Google Scholar 

  25. Pittet MJ, Valmori D, Dunbar PR, et al. High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med. 1999;190(5):705–715.

    Article  PubMed  CAS  Google Scholar 

  26. Benlalam H, Linard B, Guilloux Y, et al. Identification of five new HLA-B*3501-restricted epitopes derived from common melanoma-associated antigens, spontaneously recognized by tumor-infiltrating lymphocytes. J Immunol. Dec 1 2003;171(11):6283–6289.

    PubMed  CAS  Google Scholar 

  27. Schneider J, Brichard V, Boon T, Meyer zum Buschenfelde KH, Wolfel T. Overlapping peptides of melanocyte differentiation antigen Melan-A/MART-1 recognized by autologous cytolytic T lymphocytes in association with HLA-B45.1 and HLA-A2.1. Int J Cancer. 1998;75(3):451–458.

    Article  PubMed  CAS  Google Scholar 

  28. Kawakami Y, Eliyahu S, Delgado CH, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A. Jul 5 1994;91(14):6458–6462.

    PubMed  CAS  Google Scholar 

  29. Parkhurst MR, Salgaller ML, Southwood S, et al. Improved induction of melanomareactive CTL with peptides from the melanoma antigen gp100 modified at HLAA*0201-binding residues. J Immunol. 1996;157(6):2539–2548.

    PubMed  CAS  Google Scholar 

  30. Wolfel T, Van Pel A, Brichard V, et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol. 1994;24(3):759–764.

    PubMed  CAS  Google Scholar 

  31. Skipper JC, Hendrickson RC, Gulden PH, et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med. 1996;183(2):527–534.

    Article  PubMed  CAS  Google Scholar 

  32. Nishimura MI, Avichezer D, Custer MC, et al. MHC class I-restricted recognition of a melanoma antigen by a human CD4+ tumor infiltrating lymphocyte [In Process Citation]. Cancer Res. 1999;59(24):6230–6238.

    PubMed  CAS  Google Scholar 

  33. Riley JP, Rosenberg SA, Parkhurst MR. Identification of a New Shared HLA-A2.1 Restricted Epitope From the Melanoma Antigen Tyrosinase. J Immunother. 2001;24(3):212–220.

    Article  CAS  Google Scholar 

  34. Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med. 1996;184(6):2207–2216.

    Article  PubMed  CAS  Google Scholar 

  35. Castelli C, Tarsini P, Mazzocchi A, et al. Novel HLA-Cw8-restricted T cell epitopes derived from tyrosinase-related protein-2 and gp100 melanoma antigens [In Process Citation]. J Immunol. 1999;162(3):1739–1748.

    PubMed  CAS  Google Scholar 

  36. Touloukian CE, Leitner WW, Schnur RE, et al. Normal tissue depresses while tumor tissue enhances human T cell responses in vivo to a novel self/tumor melanoma antigen, OA1. J Immunol. Feb 1 2003;170(3):1579–1585.

    PubMed  CAS  Google Scholar 

  37. Touloukian CE, Leitner WW, Robbins PF, Rosenberg SA, Restifo NP. Mining the Melanosome for Tumor Vaccine Targets: P.polypeptide Is a Novel Tumor-associated Antigen. Cancer Res. 2001;61(22):8100–8104.

    PubMed  CAS  Google Scholar 

  38. De Plaen E, Arden K, Traversari C, et al. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics. 1994;40(5):360–369.

    Article  PubMed  CAS  Google Scholar 

  39. Gaugler B, Van den Eynde B, van der Bruggen P, et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med. 1994;179(3):921–930.

    Article  PubMed  CAS  Google Scholar 

  40. van der Bruggen P, Bastin J, Gajewski T, et al. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol. 1994;24(12):3038–3043.

    PubMed  Google Scholar 

  41. Valmori D, Gileadi U, Servis C, et al. Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigen MAGE-3. J Exp Med. 1999;189(6):895–906.

    Article  PubMed  CAS  Google Scholar 

  42. Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med. 1998;187(2):265–270.

    Article  PubMed  CAS  Google Scholar 

  43. Wang RF, Johnston SL, Zeng G, Topalian SL, Schwartzentruber DJ, Rosenberg SA. A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol. 1998;161(7):3598–3606.

    PubMed  CAS  Google Scholar 

  44. Jager E, Stockert E, Zidianakis Z, et al. Humoral immune responses of cancer patients against “Cancer-Testis” antigen NY-ESO-1: correlation with clinical events. Int J Cancer. 1999;84(5):506–510.

    PubMed  CAS  Google Scholar 

  45. De Backer O, Arden KC, Boretti M, et al. Characterization of the GAGE genes that are expressed in various human cancers and in normal testis. Cancer Res. 1999;59(13):3157–3165.

    PubMed  Google Scholar 

  46. Lupetti R, Pisarra P, Verrecchia A, et al. Translation of a retained intron in tyrosinaserelated protein (TRP) 2 mRNA generates a new cytotoxic T lymphocyte (CTL)-defined and shared human melanoma antigen not expressed in normal cells of the melanocytic lineage. J Exp Med. 1998;188(6):1005–1016.

    Article  PubMed  CAS  Google Scholar 

  47. Fisk B, Blevins TL, Wharton JT, Ioannides CG. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med. 1995;181(6):2109–2117.

    Article  PubMed  CAS  Google Scholar 

  48. Rongcun Y, Salazar-Onfray F, Charo J, et al. Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol. 1999;163(2):1037–1044.

    PubMed  CAS  Google Scholar 

  49. Kawashima I, Hudson SJ, Tsai V, et al. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol. 1998;59(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  50. Zaks TZ, Rosenberg SA. Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res. 1998;58(21):4902–4908.

    PubMed  CAS  Google Scholar 

  51. Slager EH, Borghi M, Van Der Minne CE, et al. CD4(+) Th2 Cell Recognition of HLADR-Restricted Epitopes Derived from CAMEL: A Tumor Antigen Translated in an Alternative Open Reading Frame. J Immunol. Feb 1 2003;170(3):1490–1497.

    PubMed  CAS  Google Scholar 

  52. Ayyoub M, Migliaccio M, Guillaume P, et al. Lack of tumor recognition by hTERT peptide 540-548-specific CD8(+) T cells from melanoma patients reveals inefficient antigen processing. Eur J Immunol. 2001;31(9):2642–2651.

    Article  PubMed  CAS  Google Scholar 

  53. Rock KL, Goldberg AL. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol. 1999;17:739–779.

    Article  PubMed  CAS  Google Scholar 

  54. Hanada K, Yewdell JW, Yang JC. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature. Jan 15 2004;427(6971):252–256.

    Article  PubMed  CAS  Google Scholar 

  55. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997;6(2):199–208.

    Article  PubMed  CAS  Google Scholar 

  56. Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med. 1997;186(5):785–793.

    Article  PubMed  CAS  Google Scholar 

  57. Wolfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 1995;269(5228):1281–1284.

    PubMed  CAS  Google Scholar 

  58. Robbins PF, El-Gamil M, Li YF, et al. A mutated b-catenin gene encodes a melanomaspecific antigen recognized by tumor infiltrating lymphocytes. J.Exp.Med. 1996;183:1185–1192.

    Article  PubMed  CAS  Google Scholar 

  59. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of beta-catenin by genetic defects in melanoma cell lines [see comments]. Science. 1997;275(5307):1790–1792.

    Article  PubMed  CAS  Google Scholar 

  60. Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF. T Cells Associated with Tumor Regression Recognize Frameshifted Products of the CDKN2A Tumor Suppressor Gene Locus and a Mutated HLA Class I Gene Product. J Immunol. May 15 2004;172(10):6057–6064.

    PubMed  CAS  Google Scholar 

  61. Ranade K, Hussussian CJ, Sikorski RS, et al. Mutations associated with familial melanoma impair p16INK4 function. Nat Genet. 1995;10(1):114–116.

    Article  PubMed  CAS  Google Scholar 

  62. Barker N, Morin PJ, Clevers H. The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res. 2000;77:1–24.

    PubMed  CAS  Google Scholar 

  63. Gjertsen MK, Bjorheim J, Saeterdal I, Myklebust J, Gaudernack G. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer. 1997;72(5):784–790.

    Article  PubMed  CAS  Google Scholar 

  64. Linard B, Bezieau S, Benlalam H, et al. A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol. May 1 2002;168(9):4802–4808.

    PubMed  CAS  Google Scholar 

  65. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. Jun 13–19 1985;315(6020):550–554.

    Article  PubMed  CAS  Google Scholar 

  66. Yotnda P, Firat H, Garcia-Pons F, et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest. May 15 1998;101(10):2290–2296.

    PubMed  CAS  Google Scholar 

  67. Zeng G, Touloukian CE, Wang X, Restifo NP, Rosenberg SA, Wang RF. Identification of CD4+ T cell epitopes from NY-ESO-1 presented by HLA-DR molecules. J Immunol. 2000;165(2):1153–1159.

    PubMed  CAS  Google Scholar 

  68. Zarour HM, Storkus WJ, Brusic V, Williams E, Kirkwood JM. NY-ESO-1 encodes DRB1*0401-restricted epitopes recognized by melanoma-reactive CD4+ T cells. Cancer Res. 2000;60(17):4946–4952.

    PubMed  CAS  Google Scholar 

  69. Zarour HM, Maillere B, Brusic V, et al. NY-ESO-1 119–143 is a promiscuous major histocompatibility complex class II T-helper epitope recognized by Th1-and Th2-type tumor-reactive CD4+ T cells. Cancer Res. Jan 1 2002;62(1):213–218.

    PubMed  CAS  Google Scholar 

  70. Zeng G, Wang X, Robbins PF, Rosenberg SA, Wang RF. CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc Natl Acad Sci U S A. 2001;98(7):3964–3969.

    Article  PubMed  CAS  Google Scholar 

  71. Gnjatic S, Atanackovic D, Jager E, et al. Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci U S A. Jul 22 2003;100(15):8862–8867.

    Article  PubMed  CAS  Google Scholar 

  72. Neumann F, Wagner C, Kubuschok B, Stevanovic S, Rammensee HG, Pfreundschuh M. Identification of an antigenic peptide derived from the cancer-testis antigen NYESO-1 binding to a broad range of HLA-DR subtypes. Cancer Immunol Immunother. Jan 23 2004.

    Google Scholar 

  73. Chaux P, Vantomme V, Stroobant V, et al. Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4(+) T lymphocytes [see comments]. J Exp Med. 1999;189(5):767–778.

    Article  PubMed  CAS  Google Scholar 

  74. Touloukian CE, Leitner WW, Topalian SL, et al. Identification of a MHC class IIrestricted human gp100 epitope using DR4-IE transgenic mice. J Immunol. 2000;164(7):3535–3542.

    PubMed  CAS  Google Scholar 

  75. Lapointe R, Royal RE, Reeves ME, Altomare I, Robbins PF, Hwu P. Retrovirally transduced human dendritic cells can generate T cells recognizing multiple MHC class I and class II epitopes from the melanoma antigen glycoprotein 100. J Immunol. Oct 15 2001;167(8):4758–4764.

    PubMed  CAS  Google Scholar 

  76. Parkhurst MR, Riley JP, Robbins PF, Rosenberg SA. Induction of CD4+ Th1 lymphocytes that recognize known and novel class II MHC restricted epitopes from the melanoma antigen gp100 by stimulation with recombinant protein. J Immunother. Mar–Apr 2004;27(2):79–91.

    PubMed  CAS  Google Scholar 

  77. Topalian SL, Gonzales MI, Parkhurst M, et al. Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J.Exp.Med. 1996;183:1965–1971.

    Article  PubMed  CAS  Google Scholar 

  78. Robbins PF, El-Gamil M, Li YF, Zeng G, Dudley M, Rosenberg SA. Multiple HLA Class II-Restricted Melanocyte Differentiation Antigens Are Recognized by Tumor-Infiltrating Lymphocytes from a Patient with Melanoma. J Immunol. Nov 15 2002;169(10):6036–6047.

    PubMed  CAS  Google Scholar 

  79. Novellino L, Renkvist N, Rini F, et al. Identification of a mutated receptor-like protein tyrosine phosphatase kappa as a novel, class II HLA-restricted melanoma antigen. J Immunol. Jun 15 2003;170(12):6363–6370.

    PubMed  CAS  Google Scholar 

  80. Bosch GJ, Joosten AM, Kessler JH, Melief CJ, Leeksma OC. Recognition of BCRABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood. 1996;88(9):3522–3527.

    PubMed  CAS  Google Scholar 

  81. Robbins PF, El-Gamil M, Li YF, Fitzgerald EB, Kawakami Y, Rosenberg SA. The intronic region of an incompletely spliced gp100 gene transcript encodes an epitope recognized by melanoma-reactive tumor-infiltrating lymphocytes. J Immunol. 1997;159(1):303–308.

    PubMed  CAS  Google Scholar 

  82. Rosenberg SA, Tong-On P, Li Y, et al. Identification of BING-4 cancer antigen translated from an alternative open reading frame of a gene in the extended MHC class II region using lymphocytes from a patient with a durable complete regression following immunotherapy. J Immunol. 2002;168(5):2402–2407.

    PubMed  CAS  Google Scholar 

  83. Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med. Jan 1997;3(1):5–20.

    PubMed  CAS  Google Scholar 

  84. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta. Oct 14 1998;1378(2):F115–177.

    PubMed  CAS  Google Scholar 

  85. Niedermann G, King G, Butz S, et al. The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci U S A. 1996;93(16):8572–8577.

    Article  PubMed  CAS  Google Scholar 

  86. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. 2000;404(6779):770–774.

    PubMed  CAS  Google Scholar 

  87. Deng Y, Yewdell JW, Eisenlohr LC, Bennink JR. MHC affinity, peptide liberation, T cell repertoire, and immunodominance all contribute to the paucity of MHC class Irestricted peptides recognized by antiviral CTL. J Immunol. Feb 15 1997;158(4):1507–1515.

    PubMed  CAS  Google Scholar 

  88. Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol. 1999;17:51–88.

    Article  PubMed  CAS  Google Scholar 

  89. Moreau-Aubry A, Le Guiner S, Labarriere N, Gesnel MC, Jotereau F, Breathnach R. A processed pseudogene codes for a new antigen recognized by a CD8(+) T cell clone on melanoma. J Exp Med. 2000;191(9):1617–1624.

    Article  PubMed  CAS  Google Scholar 

  90. Harada M, Li YF, El-Gamil M, Ohnmacht GA, Rosenberg SA, Robbins PF. Melanoma-Reactive CD8+ T cells recognize a novel tumor antigen expressed in a wide variety of tumor types. J Immunother. 2001;24(4):323–333.

    Article  PubMed  CAS  Google Scholar 

  91. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity. 1999;10(6):673–679.

    Article  PubMed  CAS  Google Scholar 

  92. Kessler JH, Beekman NJ, Bres-Vloemans SA, et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med. 2001;193(1):73–88.

    Article  PubMed  CAS  Google Scholar 

  93. Morel S, Levy F, Burlet-Schiltz O, et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity. 2000;12(1):107–117.

    Article  PubMed  CAS  Google Scholar 

  94. Schultz ES, Chapiro J, Lurquin C, et al. The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp Med. Feb 18 2002;195(4):391–399.

    Article  PubMed  CAS  Google Scholar 

  95. Topalian SL, Gonzales MI, Ward Y, Wang X, Wang RF. Revelation of a cryptic major histocompatibility complex class II-restricted tumor epitope in a novel RNA-processing enzyme. Cancer Res. Oct 1 2002;62(19):5505–5509.

    PubMed  CAS  Google Scholar 

  96. Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S. Identification of peptide:N-glycanase activity in mammalian-derived cultured cells. Biochem Biophys Res Commun. 1993;194(3):1124–1130.

    Article  PubMed  CAS  Google Scholar 

  97. Mosse CA, Meadows L, Luckey CJ, et al. The class I antigen-processing pathway for the membrane protein tyrosinase involves translation in the endoplasmic reticulum and processing in the cytosol. J Exp Med. 1998;187(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  98. Colella TA, Bullock TN, Russell LB, et al. Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy. J Exp Med. 2000;191(7):1221–1232.

    Article  PubMed  CAS  Google Scholar 

  99. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes. Science. Oct 25 2002;298(5594):850–854.

    Article  PubMed  CAS  Google Scholar 

  100. Boel P, Wildmann C, Sensi ML, et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity. 1995;2(2):167–175.

    Article  PubMed  CAS  Google Scholar 

  101. Fleischhauer K, Gattinoni L, Dalerba P, et al. The DAM gene family encodes a new group of tumor-specific antigens recognized by human leukocyte antigen A2-restricted cytotoxic T lymphocytes. Cancer Res. 1998;58(14):2969–2972.

    PubMed  CAS  Google Scholar 

  102. Van den Eynde B, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med. 1995;182(3):689–698.

    PubMed  Google Scholar 

  103. Guilloux Y, Lucas S, Brichard VG, et al. A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med. 1996;183(3):1173–1183.

    Article  PubMed  CAS  Google Scholar 

  104. Aarnoudse CA, van den Doel PB, Heemskerk B, Schrier PI. Interleukin-2-induced, melanoma-specific T cells recognize CAMEL, an unexpected translation product of LAGE-1. Int J Cancer. 1999;82(3):442–448.

    Article  PubMed  CAS  Google Scholar 

  105. Traversari C, van der Bruggen P, Luescher IF, et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med. 1992;176(5):1453–1457.

    Article  PubMed  CAS  Google Scholar 

  106. Chaux P, Luiten R, Demotte N, et al. Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J Immunol. 1999;163(5):2928–2936.

    PubMed  CAS  Google Scholar 

  107. Fujie T, Tanaka F, Tahara K, et al. Generation of specific antitumor reactivity by the stimulation of spleen cells from gastric cancer patients with MAGE-3 synthetic peptide. Cancer Immunol Immunother. 1999;48(4):189–194.

    Article  PubMed  CAS  Google Scholar 

  108. Tanzarella S, Russo V, Lionello I, et al. Identification of a promiscuous T-cell epitope encoded by multiple members of the MAGE family. Cancer Res. Jun 1 1999;59(11):2668–2674.

    PubMed  CAS  Google Scholar 

  109. van der Bruggen P, Szikora JP, Boel P, et al. Autologous cytolytic T lymphocytes recognize a MAGE-1 nonapeptide on melanomas expressing HLA-Cw*1601. Eur J Immunol. 1994;24(9):2134–2140.

    PubMed  Google Scholar 

  110. Visseren MJ, van der Burg SH, van der Voort EI, et al. Identification of HLA-A*0201-restricted CTL epitopes encoded by the tumor-specific MAGE-2 gene product. Int J Cancer. 1997;73(1):125–130.

    Article  PubMed  CAS  Google Scholar 

  111. Tahara K, Takesako K, Sette A, Celis E, Kitano S, Akiyoshi T. Identification of a MAGE-2-encoded human leukocyte antigen-A24-binding synthetic peptide that induces specific antitumor cytotoxic T lymphocytes [In Process Citation]. Clin Cancer Res. 1999;5(8):2236–2241.

    PubMed  CAS  Google Scholar 

  112. Tanaka F, Fujie T, Tahara K, et al. Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res. 1997;57(20):4465–4468.

    PubMed  CAS  Google Scholar 

  113. Oiso M, Eura M, Katsura F, et al. A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int J Cancer. 1999;81(3):387–394.

    Article  PubMed  CAS  Google Scholar 

  114. Bilsborough J, Panichelli C, Duffour MT, et al. A MAGE-3 peptide presented by HLA-B44 is also recognized by cytolytic T lymphocytes on HLA-B18. Tissue Antigens. Jul 2002;60(1):16–24.

    Article  PubMed  CAS  Google Scholar 

  115. Schultz ES, Zhang Y, Knowles R, et al. A MAGE-3 peptide recognized on HLA-B35 and HLA-A1 by cytolytic T lymphocytes. Tissue Antigens. 2001;57(2):103–109.

    Article  PubMed  CAS  Google Scholar 

  116. Herman J, van der Bruggen P, Luescher IF, et al. A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics. 1996;43(6):377–383.

    PubMed  CAS  Google Scholar 

  117. Kobayashi T, Lonchay C, Colau D, Demotte N, Boon T, van der Bruggen P. New MAGE-4 antigenic peptide recognized by cytolytic T lymphocytes on HLA-A1 tumor cells. Tissue Antigens. Nov 2003;62(5):426–432.

    Article  PubMed  CAS  Google Scholar 

  118. Duffour MT, Chaux P, Lurquin C, Cornelis G, Boon T, van der Bruggen P. A MAGE-A4 peptide presented by HLA-A2 is recognized by cytolytic T lymphocytes. Eur J Immunol. 1999;29(10):3329–3337.

    Article  PubMed  CAS  Google Scholar 

  119. Zhang Y, Stroobant V, Russo V, Boon T, van der Bruggen P. A MAGE-A4 peptide presented by HLA-B37 is recognized on human tumors by cytolytic T lymphocytes. Tissue Antigens. Nov 2002;60(5):365–371.

    Article  PubMed  CAS  Google Scholar 

  120. Zorn E, Hercend T. A MAGE-6-encoded peptide is recognized by expanded lymphocytes infiltrating a spontaneously regressing human primary melanoma lesion. Eur J Immunol. 1999;29(2):602–607.

    PubMed  CAS  Google Scholar 

  121. Huang LQ, Brasseur F, Serrano A, et al. Cytolytic T lymphocytes recognize an antigen encoded by MAGE-A10 on a human melanoma. J Immunol. 1999;162(11):6849–6854.

    PubMed  CAS  Google Scholar 

  122. Panelli MC, Bettinotti MP, Lally K, et al. A tumor-infiltrating lymphocyte from a melanoma metastasis with decreased expression of melanoma differentiation antigens recognizes MAGE-12. J Immunol. 2000;164(8):4382–4392.

    PubMed  CAS  Google Scholar 

  123. Maeurer MJ, Necker A, Salter RD, et al. Improved detection of melanoma antigen-specific T cells expressing low or high levels of CD8 by HLA-A2 tetramers presenting a Melan-A/Mart-1 peptide analogue. Int J Cancer. 2002;97(1):64–71.

    Article  PubMed  CAS  Google Scholar 

  124. Gnjatic S, Nagata Y, Jager E, et al. Strategy for monitoring T cell responses to NYESO-1 in patients with any HLA class I allele. Proc Natl Acad Sci U S A. 2000;97(20):10917–10922.

    Article  PubMed  CAS  Google Scholar 

  125. Harada M, Li YF, El-Gamil M, Rosenberg SA, Robbins PF. Use of an in vitro immunoselected tumor line to identify shared melanoma antigens recognized by HLA-A*0201-restricted T cells. Cancer Res. 2001;61(3):1089–1094.

    PubMed  CAS  Google Scholar 

  126. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine [see comments]. J Natl Cancer Inst. 1995;87(13):982–990.

    PubMed  CAS  Google Scholar 

  127. Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E. Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res. Jan 15 1999;59(2):431–435.

    PubMed  CAS  Google Scholar 

  128. Kawakami Y, Eliyahu S, Jennings C, et al. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol. 1995;154(8):3961–3968.

    PubMed  CAS  Google Scholar 

  129. Tsai V, Southwood S, Sidney J, et al. Identification of subdominant CTL epitopes of the GP100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells. J Immunol. 1997;158(4):1796–1802.

    PubMed  CAS  Google Scholar 

  130. Kawakami Y, Robbins PF, Wang X, et al. Identification of new melanoma epitopes on melanosomal proteins recognized by tumor infiltrating T lymphocytes restricted by HLA-A1,-A2, and-A3 alleles. J Immunol. 1998;161(12):6985–6992.

    PubMed  CAS  Google Scholar 

  131. Skipper JC, Kittlesen DJ, Hendrickson RC, et al. Shared epitopes for HLA-A3-restricted melanoma-reactive human CTL include a naturally processed epitope from Pmel-17/gp100. J Immunol. 1996;157(11):5027–5033.

    PubMed  CAS  Google Scholar 

  132. Sensi M, Pellegatta S, Vegetti C, Nicolini G, Parmiani G, Anichini A. Identification of a novel gp100/pMel17 peptide presented by HLA-A*6801 and recognized on human melanoma by cytolytic T cell clones. Tissue Antigens. Apr 2002;59(4):273–279.

    Article  PubMed  CAS  Google Scholar 

  133. Jaramillo A, Majumder K, Manna PP, et al. Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer. Dec 10 2002;102(5):499–506.

    Article  PubMed  CAS  Google Scholar 

  134. Kawakami Y, Eliyahu S, Sakaguchi K, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2 restricted tumor infiltrating lymphocytes. J.Exp.Med. 1994;180:347–352.

    Article  PubMed  CAS  Google Scholar 

  135. Castelli C, Storkus WJ, Maeurer MJ, et al. Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J Exp Med. 1995;181(1):363–368.

    Article  PubMed  CAS  Google Scholar 

  136. Salazar-Onfray F, Nakazawa T, Chhajlani V, et al. Synthetic peptides derived from the melanocyte-stimulating hormone receptor MC1R can stimulate HLA-A2-restricted cytotoxic T lymphocytes that recognize naturally processed peptides on human melanoma cells. Cancer Res. 1997;57(19):4348–4355.

    PubMed  CAS  Google Scholar 

  137. Correale P, Walmsley K, Nieroda C, et al. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst. Feb 19 1997;89(4):293–300.

    Article  PubMed  CAS  Google Scholar 

  138. Gaugler B, Brouwenstijn N, Vantomme V, et al. A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics. 1996;44(5):323–330.

    Article  PubMed  CAS  Google Scholar 

  139. Khong HT, Rosenberg SA. The Waardenburg Syndrome Type 4 Gene, SOX10, Is a Novel Tumor-associated Antigen Identified in a Patient with a Dramatic Response to Immunotherapy. Cancer Res. 2002;62(11):3020–3023.

    PubMed  CAS  Google Scholar 

  140. Parkhurst MR, Fitzgerald EB, Southwood S, Sette A, Rosenberg SA, Kawakami Y. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res. 1998;58(21):4895–4901.

    PubMed  CAS  Google Scholar 

  141. Noppen C, Levy F, Burri L, et al. Naturally processed and concealed HLA-A2.1-restricted epitopes from tumor-associated antigen tyrosinase-related protein-2. Int J Cancer. Jul 15 2000;87(2):241–246.

    Article  PubMed  CAS  Google Scholar 

  142. Wang RF, Johnston, S.L., Southwood, S., Sette, A., and Rosenberg, S.A. Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA-A31 and-A33. J. Immunol. 1998;160:890–897.

    PubMed  CAS  Google Scholar 

  143. Sun Y, Song M, Stevanovic S, et al. Identification of a new HLA-A(*)0201-restricted T-cell epitope from the tyrosinase-related protein 2 (TRP2) melanoma antigen. Int J Cancer. 2000;87(3):399–404.

    Article  PubMed  CAS  Google Scholar 

  144. Kittlesen DJ, Thompson LW, Gulden PH, et al. Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development. J Immunol. 1998;160(5):2099–2106.

    PubMed  CAS  Google Scholar 

  145. Kang X-Q, Kawakami Y, Sakaguchi K, et al. Identification of a tyrosinase epitope reocognized by HLA-A24 restricted tumor-infiltrating lymphocytes. J.Immunol. 1995;155:1343–1348.

    PubMed  CAS  Google Scholar 

  146. Morel S, Ooms A, Van Pel A, et al. A tyrosinase peptide presented by HLA-B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes. Int J Cancer. Dec 10 1999;83(6):755–759.

    Article  PubMed  CAS  Google Scholar 

  147. Brichard VG, Herman J, Van Pel A, et al. A tyrosinase nonapeptide presented by HLA-B44 is recognized on a human melanoma by autologous cytolytic T lymphocytes. Eur J Immunol. 1996;26(1):224–230.

    PubMed  CAS  Google Scholar 

  148. Butterfield LH, Koh A, Meng W, et al. Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res. 1999;59(13):3134–3142.

    PubMed  CAS  Google Scholar 

  149. Cameron TO, Norris PJ, Patel A, et al. Labeling antigen-specific CD4(+) T cells with class II MHC oligomers. J Immunol Methods. Oct 1 2002;268(1):51–69.

    Article  PubMed  CAS  Google Scholar 

  150. Maeda Y, Ito M, Harashima N, et al. Cleavage and polyadenylation specificity factor (CPSF)-derived peptides can induce HLA-A2-restricted and tumor-specific CTLs in the majority of gastrointestinal cancer patients. Int J Cancer. May 20 2002;99(3):409–417.

    Article  PubMed  CAS  Google Scholar 

  151. Vissers JL, De Vries IJ, Schreurs MW, et al. The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res. 1999;59(21):5554–5559.

    PubMed  CAS  Google Scholar 

  152. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neuderived peptide. Proc Natl Acad Sci U S A. Jan 17 1995;92(2):432–436.

    PubMed  CAS  Google Scholar 

  153. Ronsin C, Chung-Scott V, Poullion I, Aknouche N, Gaudin C, Triebel F. A non-AUG-defined alternative open reading frame of the intestinal carboxyl esterase mRNA generates an epitope recognized by renal cell carcinoma-reactive tumor-infiltrating lymphocytes in situ. J Immunol. 1999;163(1):483–490.

    PubMed  CAS  Google Scholar 

  154. Probst-Kepper M, Stroobant V, Kridel R, et al. An Alternative Open Reading Frame of the Human Macrophage Colony-stimulating Factor Gene Is Independently Translated and Codes for an Antigenic Peptide of 14 Amino Acids Recognized by Tumor-infiltrating CD8 T Lymphocytes. J Exp Med. 2001;193(10):1189–1198.

    Article  PubMed  CAS  Google Scholar 

  155. Brossart P, Heinrich KS, Stuhler G, et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood. 1999;93(12):4309–4317.

    PubMed  CAS  Google Scholar 

  156. Ropke M, Hald J, Guldberg P, et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci U S A. 1996;93(25):14704–14707.

    Article  PubMed  CAS  Google Scholar 

  157. Barfoed AM, Petersen TR, Kirkin AF, Thor Straten P, Claesson MH, Zeuthen J. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand J Immunol. Feb 2000;51(2):128–133.

    Article  PubMed  CAS  Google Scholar 

  158. Eura M, Chikamatsu K, Katsura F, et al. A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck. Clin Cancer Res. 2000;6(3):979–986.

    PubMed  CAS  Google Scholar 

  159. Azuma K, Shichijo S, Maeda Y, et al. Mutated p53 gene encodes a nonmutated epitope recognized by HLA-B*4601-restricted and tumor cell-reactive CTLs at tumor site. Cancer Res. Feb 15 2003;63(4):854–858.

    PubMed  CAS  Google Scholar 

  160. Horiguchi Y, Nukaya I, Okazawa K, et al. Screening of HLA-A24-restricted epitope peptides from prostate-specific membrane antigen that induce specific antitumor cytotoxic T lymphocytes. Clin Cancer Res. Dec 2002;8(12):3885–3892.

    PubMed  CAS  Google Scholar 

  161. Van Den Eynde BJ, Gaugler B, Probst-Kepper M, et al. A new antigen recognized by cytolytic T lymphocytes on a human kidney tumor results from reverse strand transcription. J Exp Med. 1999;190(12):1793–1800.

    Google Scholar 

  162. Schmitz M, Diestelkoetter P, Weigle B, et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res. 2000;60(17):4845–4849.

    PubMed  CAS  Google Scholar 

  163. Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci U S A. 2000;97(9):4796–4801.

    Article  PubMed  CAS  Google Scholar 

  164. Echchakir H, Mami-Chouaib F, Vergnon I, et al. A point mutation in the alpha-actinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res. May 15 2001;61(10):4078–4083.

    PubMed  CAS  Google Scholar 

  165. Yotnda P, Garcia F, Peuchmaur M, et al. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J Clin Invest. Jul 15 1998;102(2):455–462.

    Article  PubMed  CAS  Google Scholar 

  166. Gaudin C, Kremer F, Angevin E, Scott V, Triebel F. A hsp70-2 mutation recognized by CTL on a human renal cell carcinoma. J Immunol. 1999;162(3):1730–1738.

    PubMed  CAS  Google Scholar 

  167. Brandle D, Brasseur F, Weynants P, Boon T, Van den Eynde B. A mutated HLA-A2 molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J Exp Med. 1996;183(6):2501–2508.

    Article  PubMed  CAS  Google Scholar 

  168. Gueguen M, Patard JJ, Gaugler B, et al. An antigen recognized by autologous CTLs on a human bladder carcinoma. J Immunol. 1998;160(12):6188–6194.

    PubMed  CAS  Google Scholar 

  169. Chiari R, Foury F, De Plaen E, Baurain JF, Thonnard J, Coulie PG. Two antigens recognized by autologous cytolytic T lymphocytes on a melanoma result from a single point mutation in an essential housekeeping gene. Cancer Res. 1999;59(22):5785–5792.

    PubMed  CAS  Google Scholar 

  170. Baurain JF, Colau D, van Baren N, et al. High Frequency of Autologous Anti-Melanoma CTL Directed Against an Antigen Generated by a Point Mutation in a New Helicase Gene. J Immunol. 2000;164(11):6057–6066.

    PubMed  CAS  Google Scholar 

  171. Zorn E, Hercend T. A natural cytotoxic T cell response in a spontaneously regressing human melanoma targets a neoantigen resulting from a somatic point mutation. Eur J Immunol. 1999;29(2):592–601.

    PubMed  CAS  Google Scholar 

  172. Vigneron N, Ooms A, Morel S, Degiovanni G, Van Den Eynde BJ. Identification of a new peptide recognized by autologous cytolytic T lymphocytes on a human melanoma. Cancer Immun. Jul 19 2002;2:9.

    PubMed  Google Scholar 

  173. Kawakami Y, Wang X, Shofuda T, et al. Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J Immunol. 2001;166(4):2871–2877.

    PubMed  CAS  Google Scholar 

  174. Makita M, Azuma T, Hamaguchi H, et al. Leukemia-associated fusion proteins, dek-can and bcr-abl, represent immunogenic HLA-DR-restricted epitopes recognized by fusion peptide-specific CD4+ T lymphocytes. Leukemia. Dec 2002;16(12):2400–2407.

    Article  PubMed  CAS  Google Scholar 

  175. Wang RF, Wang X, Rosenberg SA. Identification of a novel major histocompatibility complex class II-restricted tumor antigen resulting from a chromosomal rearrangement recognized by CD4(+) T cells. J Exp Med. 1999;189(10):1659–1668.

    Article  PubMed  CAS  Google Scholar 

  176. Saeterdal I, Bjorheim J, Lislerud K, et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A. 2001;98(23):13255–13260.

    PubMed  CAS  Google Scholar 

  177. Kobayashi H, Omiya R, Ruiz M, et al. Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clin Cancer Res. Oct 2002;8(10):3219–3225.

    PubMed  CAS  Google Scholar 

  178. Maccalli C, Pende D, Castelli C, Mingari MC, Robbins PF, Parmiani G. NKG2D engagement of colorectal cancer-specific T cells strengthens TCR-mediated antigen stimulation and elicits TCR independent anti-tumor activity. Eur J Immunol. Jul 2003;33(7):2033–2043.

    Article  PubMed  CAS  Google Scholar 

  179. Hural JA, Friedman RS, McNabb A, Steen SS, Henderson RA, Kalos M. Identification of naturally processed CD4 T cell epitopes from the prostate-specific antigen kallikrein 4 using peptide-based in vitro stimulation. J Immunol. Jul 1 2002;169(1):557–565.

    PubMed  CAS  Google Scholar 

  180. Chaux P, Lethe B, Van Snick J, et al. A MAGE-1 peptide recognized on HLA-DR15 by CD4(+) T cells. Eur J Immunol. Jun 2001;31(6):1910–1916.

    Article  PubMed  CAS  Google Scholar 

  181. Zhang Y, Chaux P, Stroobant V, et al. A MAGE-3 peptide presented by HLA-DR1 to CD4+ T cells that were isolated from a melanoma patient vaccinated with a MAGE-3 protein. J Immunol. Jul 1 2003;171(1):219–225.

    PubMed  CAS  Google Scholar 

  182. Kobayashi H, Song Y, Hoon DS, Appella E, Celis E. Tumor-reactive T helper lymphocytes recognize a promiscuous MAGE-A3 epitope presented by various major histocompatibility complex class II alleles. Cancer Res. Jun 15 2001;61(12):4773–4778.

    PubMed  CAS  Google Scholar 

  183. Manici S, Sturniolo T, Imro MA, et al. Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11 [see comments]. J Exp Med. 1999;189(5):871–876.

    Article  PubMed  CAS  Google Scholar 

  184. Consogno G, Manici S, Facchinetti V, et al. Identification of immunodominant regions among promiscuous HLA-DR-restricted CD4+ T-cell epitopes on the tumor antigen MAGE-3. Blood. Feb 1 2003;101(3):1038–1044.

    Article  PubMed  CAS  Google Scholar 

  185. Schultz ES, Lethe B, Cambiaso CL, et al. A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res. 2000;60(22):6272–6275.

    PubMed  CAS  Google Scholar 

  186. Zarour HM, Kirkwood JM, Kierstead LS, et al. Melan-A/MART-1(51–73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4(+) T cells. Proc Natl Acad Sci U S A. 2000;97(1):400–405.

    Article  PubMed  CAS  Google Scholar 

  187. Chen JL, Dunbar PR, Gileadi U, et al. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol. 2000;165(2):948–955.

    PubMed  CAS  Google Scholar 

  188. Kobayashi H, Kokubo T, Sato K, et al. CD4+ T cells from peripheral blood of a melanoma patient recognize peptides derived from nonmutated tyrosinase. Cancer Res. 1998;58(2):296–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Robbins, P.F. (2005). Tumor Associated Antigens. In: Nagorsen, D., Marincola, F. (eds) Analyzing T Cell Responses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3623-X_2

Download citation

Publish with us

Policies and ethics