Skip to main content

Photosystem I and Photoprotection: Cyclic Electron Flow and Water-Water Cycle

  • Chapter
Photoprotection, Photoinhibition, Gene Regulation, and Environment

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 21))

Cyclic electron transport around photosystem I has been proposed to play dual roles in the regulation of photosynthetic electron transport: down-regulating PS II and adjusting the ATP/NADPH ratio. Recent molecular genetics revealed that cyclic electron flow is essential for normal photosynthesis and growth. The water-water-cycle would also play a role similar to cyclic electron transport, in addition to the effective scavenging of reactive oxygen species generated in PS I. Though their rates of electron flux are lower than that of linear electron transport at steady state, these alternative electron flows are indispensable for acute responses to environmental changes and stress. Recent biochemical and molecular studies at the protein and gene level have clarified the components participating in the alternative electron transport. These new findings, including the dual functions of cyclic electron flow and the water-water cycle, and their respective roles in stress responses, are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Summary

  • Adams WW III, Zarter CR, Mueh KE, Amiard V and Demmig- Adams B (2005) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 49–64. Springer, Dordrecht

    Google Scholar 

  • Allen JF (2002) Photosynthesis of ATP – electrons, proton pumps, rotors, and poise. Cell 110: 273–276

    PubMed  CAS  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, pp 123–150. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    PubMed  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans Roy Soc Lond B 355: 1419–1431

    CAS  Google Scholar 

  • Asada K and Badger MR (1984) Photoreduction of 18O2 and H18 2 O2with concomitant evolution of 16O2 in intact spinach chloroplasts; Evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiol 25: 1169–1179

    CAS  Google Scholar 

  • Asada K and Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB and Arntzen CJ (eds) Photoinhibition, pp 227–287. Elsevier, Amsterdam

    Google Scholar 

  • Asada K, Kiso K and Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249: 2175–2181

    PubMed  CAS  Google Scholar 

  • Asada K, Heber U and Schreiber U (1993) Electron flow to the intersystem chain from stromal components and cyclic electron flow in maize chloroplasts, as detected in intact leaves by monitoring redox change of P700 and chlorophyll fluorescence. Plant Cell Physiol 34: 39–50

    CAS  Google Scholar 

  • Badger MR, von Caemmerer R, Ruuska S and Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans Roy Soc Lond B 355: 1433–1446

    CAS  Google Scholar 

  • Barth C and Krause GH (2002) Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystem I and II. Planta 216: 273–279

    PubMed  CAS  Google Scholar 

  • Barth C, Krause GH and Winter K (2001) Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant Cell Environ 24: 163–176

    CAS  Google Scholar 

  • Bendall DS and Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229: 23–38

    Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79: 4352–4356

    PubMed  CAS  Google Scholar 

  • Burrows PA, Sazanov A, Svab Z, Maliga P and Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17: 868–876

    PubMed  CAS  Google Scholar 

  • Casano LM, Zapata JM, Martín M and Sabater B (2000) Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADHdehydrogenase and peroxidase. J Biol Chem 275: 942– 948

    PubMed  CAS  Google Scholar 

  • Chew O, Whelan J and Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria dual targeting of antioxidant defenses in plants. J Biol Chem 278: 46869–46877

    PubMed  CAS  Google Scholar 

  • Cornic G, Bukhov NG, Weise C, Bligny R and Heber U (2000) Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants. Role of photosystem I-dependent proton pumping. Planta 210: 468– 477

    PubMed  CAS  Google Scholar 

  • Corneille S, Cournac L, Guedeney G, Havaux M and Peltier G (1998) Reduction of the plastoquinone pool by exogenous NADH and NADPH in higher plant chloroplasts. Characterization of a NAD(P)H-plastoquinone oxidoreductase activity. Biochim Biophys Acta 1363: 59–69

    Google Scholar 

  • Demmig-Adams B, Ebbert V, Zarter CR and Adams WW III (2005) Characteristics and species-dependent employment of flexible versus sustained thermal dissipation and photoinhibition. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 39–48. Springer, Dordrecht

    Google Scholar 

  • Deng Y, Ye J and Mi H (2003) Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 44: 534–540

    PubMed  CAS  Google Scholar 

  • dePamphilis CW and Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339

    PubMed  CAS  Google Scholar 

  • Elortza F, Asturias JA and Arizmendi JM (1999) Chloroplast NADH dehydrogenase from Pisum sativum: characterization of its activity and cloning of ndhK gene. Plant Cell Physiol 40: 149–154

    PubMed  CAS  Google Scholar 

  • Endo T and Asada K (1996) Dark induction of nonphotochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonus reinhardtii. Plant Cell Physiol 37: 551–555

    CAS  Google Scholar 

  • Endo T, Schreiber U and Asada K (1995) Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonus reinhardtii. Plant Cell Physiol 36: 1253–1258

    CAS  Google Scholar 

  • Endo T, Mi H, Shikanai T and Asada K (1997) Donation of electrons to plastoquinone by NAD(P)H dehydrogenase and by ferredoxin-quinone reductase in spinach chloroplasts. Plant Cell Physiol 38: 1272–1277

    CAS  Google Scholar 

  • Endo T, Shikanai T, Sato F and Asada K (1998) NAD(P)H dehydrogenase-dependent, antimycin A-sensitive electron donation to plastoquinone in tobacco chloroplasts. Plant Cell Physiol 39: 1226–1231

    CAS  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K and Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457: 5–8

    PubMed  CAS  Google Scholar 

  • Endo T, Takabayashi A, Shikanai T and Sato F (2001). Defect in chloroplastic NAD(P)H dehydrogenase complex resulted in stromal over-reduction after exposure to strong light. In: Procedings in International Congress of Photosynthesis. S11- 018, CSIRO Publishing, Brisbane

    Google Scholar 

  • Fearnley IM and Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140: 105–134

    PubMed  CAS  Google Scholar 

  • Feild TS, Nedbal L and Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originated from chlororespiration. Plant Physiol 116: 1209–1218

    PubMed  CAS  Google Scholar 

  • Foyer CH and Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146: 359–388

    CAS  Google Scholar 

  • Friedrich T (1998) The NADH: ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364: 134–146

    PubMed  CAS  Google Scholar 

  • Funk E, Schäfer E and Steinmüller K (1999) Characterization of the complex I-homologous NAD(P)H-plastoquinoneoxidoreductase (NDH-complex) of maize chloroplasts. J Plant Physiol 154: 16–23

    CAS  Google Scholar 

  • Godde D (1982) Evidence for a membrane bound NADHplastoquinone- oxidoreductase in Chlamydomonas reinhardtii CW-15. Arch Microbiol 131: 197–202

    CAS  Google Scholar 

  • Godde D and Trebst A (1980) NADH as electron donorfor the photosynthetic membrane of Chlamydomonas reinhardtii. Arch Microbiol 127: 245–252

    CAS  Google Scholar 

  • Goh CH, Schreiber U and Hedrich R (1999) New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli. Plant Cell Environ 22: 1057–1070

    CAS  Google Scholar 

  • Guedeney G, Corneile S, Cuine S and Peltier G (1996) Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett 378: 277– 280

    PubMed  CAS  Google Scholar 

  • Harbinson J and Foyer CH (1991) Relationship between the efficiencies of photosytems I and II and stromal redox state in CO2-free air. Evidence for cyclic electron flow in vivo. Plant Physiol 97: 41–49

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Endo T, Peltier G, Tasaka M and Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of ndhB in Arabidopsis. Plant J 36: 541–549

    PubMed  CAS  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73: 223–231

    PubMed  CAS  Google Scholar 

  • Heber U and Walker DA (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100: 1621–1626

    PubMed  CAS  Google Scholar 

  • Hideg E, Kálai A, Hideg K and Vass I (1998) Photoinhibition of photosytems in vivo results in singlet oxygen production. Detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37: 11405–11411

    PubMed  CAS  Google Scholar 

  • Hideg E, Kalai A, Hideg K and Vass I (2000) Do oxidative stress conditions impairing photosynthesis in the light manifest as photoinhibition? Phil Trans Roy Soc London B 355: 1511– 1516

    PubMed  CAS  Google Scholar 

  • Hideg E, Ogawa K, Kalai T and Hideg K (2001) Singlet oxygen imaging in Arabidopsis thaliana leaves under photoinhibition by excess photosynthetically active radiation. Physiol Plant 112: 10–14

    PubMed  CAS  Google Scholar 

  • Hideg E, Barta C, Kálai T, Vass I, Hideg K and Asada K (2002) Detection of singlet oxygen and superoxide with fluorescence sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 43: 1154–1164

    PubMed  CAS  Google Scholar 

  • Hirotsu N, Makino A, Ushio A and Mae T. (2004) Changes in the thermal dissipation and the electron flow in the waterwater cycle in rice grown under conditions of physiologically low temperature. Plant Cell Physiol 45: 635–644

    PubMed  CAS  Google Scholar 

  • Horváth EM, Peter SO, Jöet T, Rumeau D, Cournac L, Horváth GV, Kavanagh TA, Schäfer C, Peltier G and Medgesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123: 1337–1349

    PubMed  Google Scholar 

  • Ishida H, Nishimori Y, Sigisawa M, Makino M and Mae T (1997) The large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38: 471–479

    PubMed  CAS  Google Scholar 

  • Ishida H, Shimizu S, Makino A and Mae T (1998) Lightdependent fragmentation of the large subunit of ribulose-1,5- bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves. Planta 204: 305–309

    PubMed  CAS  Google Scholar 

  • Joët T, Cournac L, Guedeney G, Rumeau D, Peter SO, Schafer C, Horvath E, Medgyesy P and Peltier G (1998) Increased sensitivity of photosynthesis to anaerobic conditions induced by targeted inactivation of the chloroplast ndhB gene. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 3, pp 1967–1970. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Joët T, Cournac L, Peltier G and Havaux M (2002) Cyclic electron flow around photosytem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADHdehydrogenase complex. Plant Physiol 128: 760–769

    PubMed  Google Scholar 

  • Jung H-S and Niyogi KK (2005) Molecular analysis of photoprotection and photosynthesis. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 127–143. Springer, Dordrecht

    Google Scholar 

  • Kaiser W (1976) Effect of hydrogen peroxide on CO2-fixation of isolated chloroplasts. Biochim Biophys Acta 440: 476– 482

    PubMed  CAS  Google Scholar 

  • Kofer W, Koop H-U, Wanner G and Steinmüller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258: 166–173

    PubMed  CAS  Google Scholar 

  • Kozaki A and Takeba G (1996) Photorespiration protects C3 plants from photoinhibition. Nature 384: 557–560

    CAS  Google Scholar 

  • Kurisu K, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009–1014

    PubMed  CAS  Google Scholar 

  • Lascano HR, Casano LM, Martín M and Sabater B (2003) The activity of the chloroplastic Ndh complex is regulated by phosphorylation of NDH-F subunit. Plant Physiol 132: 256– 262

    PubMed  CAS  Google Scholar 

  • Leif H, Sled VD, Ohnishi T, Weiss H and Friedrich T (1995) Isolation and characterization of the proton-translocating NADH:ubiquinone oxidoreductase formEscherichia coli. Eur J Biochem 230: 538–548

    PubMed  CAS  Google Scholar 

  • Lennon AM, Prommeenate P and Nixon PJ (2003) Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids. Planta 218: 254–260

    PubMed  CAS  Google Scholar 

  • Li X-G, Duan W, Meng Q-W, Zou Q and Zhao S-J (2004) The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. Plant Cell Physiol 45: 103–108

    PubMed  CAS  Google Scholar 

  • Makino A, Miyake C and Yokota A (2002) Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant Cell Physiol 43: 1017–1026

    PubMed  CAS  Google Scholar 

  • Mano J, Miyake C, Schreiber U and Asada K (1995) Photoactivation of the electron flow from NADPH to plastoquinone in spinach chloroplasts. Plant Cell Physiol 33: 12331237

    Google Scholar 

  • Mano J, Ohno C, Domae Y and Asada K (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologeninduced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta 1504: 275–287

    PubMed  CAS  Google Scholar 

  • Matsuo M, Endo T and Asada K (1998) Properties of the respiratory NAD(P)H dehydrogenase isolated from the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 39: 263– 267

    PubMed  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    CAS  Google Scholar 

  • Mehta RA, Fawcett TW, Porth D and Mattoo AK (1992) Oxidative stress causes rapid membrane translocation and in vivo degradation of riburose-1,5-bisphosphate carboxylase/ oxygenase. J Biol Chem 267: 2810–2816

    PubMed  CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U and Asada K (1992a) Donation of electrons to the intersystem chain in the cyanobacterium Synechococcus sp. PCC 7002 as determined by the reduction of P700+. Plant Cell Physiol 33: 1099–1105

    CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U, Ogawa T and Asada K (1992b) Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 33: 1233–1237

    CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U, Ogawa T and Asada K (1994) NAD(P)H-dehydrogenase-dependent cyclic electron flow around photosystem I in the cyanobacterium Synechocystis PCC 6803: a study of dark-starved cells and spheroplasts. Plant Cell Physiol 35: 163–173

    CAS  Google Scholar 

  • Mi H, Endo T, Ogawa T and Asada K (1995) Thylakoid membrane-bound pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 36: 661–668

    CAS  Google Scholar 

  • Miyake C and Asada K (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate: hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37: 423–430

    CAS  Google Scholar 

  • Miyake C and Asada K (2003) Thewater-water cycle in algae. In: Larkum AW, Dougles SE and Raven JA (eds) Photosynthesis in Algae, pp 183–204. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Miyake C and Okamura M (2003) Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts. Plant Cell Physiol 44: 457– 462

    PubMed  CAS  Google Scholar 

  • Miyake C and Yokota A (2000) Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol 41: 335–343

    PubMed  CAS  Google Scholar 

  • Miyake C and Yokota A (2001) Cyclic flow of electrons within PSII in thylakoid membranes. Plant Cell Physiol 45: 508–515

    Google Scholar 

  • Miyake C, Michihata F and Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae. Plant Cell Physiol 32: 33–43

    CAS  Google Scholar 

  • Miyake C, Cao WH and Asada K (1993) Purification and molecular properties of thylakoid-bound ascorbate peroxidase from spinach chloroplasts. Plant Cell Physiol 34: 881–889

    CAS  Google Scholar 

  • Miyake C, Schreiber U and Asada K (1995) Ferredoxindependent and antimycin A-sensitive reduction of cytochrome b-559 by far-red light in maize thylakoids; participation of a menadiol-reducible cytochrome b-559 in cyclic electron flow. Plant Cell Physiol 36: 743–748

    CAS  Google Scholar 

  • Miyake C, Schreiber U, Hormann H, Sano S and Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39: 821–829

    CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer, J, Endo T, Tasaka M and Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110: 361–371

    PubMed  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M and Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579–582

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI and Murata N (2005) Regulation by environmental conditions of the repair of photosystem II in cyanobacteria. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 193–203. Springer, Dordrecht

    Google Scholar 

  • Nixon PJ (2000) Chlororespiration. Phil Trans Roy Soc Lond B 355: 1541–1547

    CAS  Google Scholar 

  • Obara K, Sumi K and Fukuda H (2002) The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts. Plant Cell Physiol 43: 697–705

    PubMed  CAS  Google Scholar 

  • Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci USA 88: 4275–4279

    PubMed  CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Takabe K and Asada K (1995) Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: Detection by immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 36: 565– 573

    CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    CAS  Google Scholar 

  • Osmond CB and Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46: 1351–1363

    CAS  Google Scholar 

  • Owaki T and Asada K (2003) Oxygen is indispensable to start photosynthetic CO2-fixation in maize. Plant Biology 2003, Abstract Nr. 329

    Google Scholar 

  • Park Y-I, Chow WS, Osmond CB and Anderson JM (1996) Electron transport to oxygen mitigates against the photoinactivation photosystem II in vivo. Photosynth Res 50: 23–32

    CAS  Google Scholar 

  • Peltier G and Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53: 523–550

    PubMed  CAS  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M and Mittler R (2003) Growth suppression, altered stomatal responses and augmented induction of heat shock proteins in cytosolic ascorbate (apx-1)- deficient arabidopsis plants. Plant J 34: 187–203

    PubMed  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbateglutathione pathway in chloroplasts by metabolic modeling. Computer simulation as a step towards flux analysis. Plant Physiol 126: 445–462

    PubMed  CAS  Google Scholar 

  • Quiles MJ and Cuello J (1998) Association of ferredoxin-NADP oxidoreductase with the chloroplastic pyridine nucleotide dehydrogenase complex in barley leaves. Plant Physiol 117: 235– 244

    Google Scholar 

  • Quiles MJ, Garcia A and Cuello J (2000) Separation by bluenative PAGE and identification of the whole NAD(P)H dehydrogenase complex from barley stroma thylakoids. Plant Physiol Biochem 38: 225–232

    CAS  Google Scholar 

  • Radmer RJ and Kok B (1976) Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiol 58: 336–340

    PubMed  CAS  Google Scholar 

  • Rasmusson AG, Heiser V, Zabaleta E, Brennicke A and Grohmann L (1998) Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. Biochim Biophys Acta 1364: 101–111

    PubMed  CAS  Google Scholar 

  • Raven EJ (2003) Understanding functional diversity and substrate specificity in heme peroxidase: What can we learn from ascorbate peroxidase? Nat Prod Rep 20: 367–381

    PubMed  CAS  Google Scholar 

  • Ravenel J, Peltier G and Havaux M (1994) The cyclic electron pathways around photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage. Planta 193: 251–259

    CAS  Google Scholar 

  • Rizhsky L, Liang H and Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278: 38921–38925

    PubMed  CAS  Google Scholar 

  • Sazanov, LA, Burrows PA and Nixon PJ (1998) The plastid ndh genes code for an NADH-specific dehydrogenase: Isolation of a complex I analogue from pea thylakoid membranes. Proc Natl Acad Sci USA 95: 1319–1324

    PubMed  CAS  Google Scholar 

  • Schreiber U, Endo T, Mi H and Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36: 873–882

    CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K and Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95: 9705–9709

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kampgashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Sonoike K (1996) Photoinhibition of photosystem I: Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37: 239–247

    CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atypical haem in the cytochorme b6 f complex. Nature 426: 413–418

    PubMed  CAS  Google Scholar 

  • Tagawa K, Tsujimoto HY and Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49: 567–572

    PubMed  CAS  Google Scholar 

  • Takabayashi A, Endo T, Shikanai T and Sato F (2002) Postillumination reduction of the plastoquinone pool in chloroplast transformants in which chloroplastic NAD(P)H dehydrogenase was inactivated. Biosci Biotech Biochem 66: 2107–2111

    CAS  Google Scholar 

  • Teicher HB and Scheller HV (1998) The NAD(P)H dehydrogenase in barley thylakoids is photoactivatable and uses NADPH as well as NADH. Plant Physiol 117: 525–532

    CAS  Google Scholar 

  • Terashima I, Funayama S and Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativum L. at lowtemperature is photosystem I, not photosystem II. Planta 193: 300–306

    CAS  Google Scholar 

  • Tjus SE, Scheller HV, Andersson B and Moller BL (2001) Active oxygen produced during selective excitation of photosystem I is damaging not only photosystem I but also photosystem II. Plant Physiol 125: 2007–2015

    PubMed  CAS  Google Scholar 

  • Videira A (1998) Complex I from the fungus Neurospora crassa. Biochim Biophys Acta 1364: 89–100

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T and Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32: 915–925

    PubMed  CAS  Google Scholar 

  • Yamamoto Y (2001) Quality control of photosystem II. Plant Cell Physiol 42: 121–128

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Miyake C, Dietz K-J, Tomizawa KI, Murata N and Yokota A (1999) Thioredoxin peroxidase in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 447: 269– 273

    PubMed  CAS  Google Scholar 

  • Yokthongwattana K and Melis A (2005) Photoinhibition and recovery in oxygenic photosynthesis: Mechanism of a photosystem-II damage and repair cycle. In: Demmig-Adams B, Adams WWIII and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, this volume. Springer, Berlin

    Google Scholar 

  • Yoshimura K, Yabuta Y, Tamoi M, Ishikawa M and Shigeoka S (1999) Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem J 338: 41–48

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Endo, T., Asada, K. (2008). Photosystem I and Photoprotection: Cyclic Electron Flow and Water-Water Cycle. In: Demmig-Adams, B., Adams, W.W., Mattoo, A.K. (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, vol 21. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3579-9_14

Download citation

Publish with us

Policies and ethics