Skip to main content

Ge/Si Nanostructures with Quantum Dots Grown by Ion-Beam-Assisted Heteroepitaxy

  • Conference paper
Quantum Dots: Fundamentals, Applications, and Frontiers

Part of the book series: NATO Science Series ((NAII,volume 190))

Abstract

Scanning tunneling microscopy (STM) experiments were performed to study growth modes induced by hyperthermal Ge ion action during molecular-beam epitaxy (MBE) of Ge on Si(100). Continuous and pulsed ion-beams were used. STM studies have shown that ion-beam action during heteroepitaxy leads to decrease in critical film thickness for transition from two-dimensional (2D) to three-dimensional (3D) growth modes, enhancement of 3D island density and narrowing of size distribution, as compared with conventional MBE experiments. The crystal perfection of Ge/Si structures with Ge islands embedded in Si was analyzed by the Rutherford backscattering/channeling technique (RBS) and transmission electron microscopy (TEM). The studies of Si/Ge/Si(100) structures indicated defect-free Ge dots and Si layers for the initial stage of heteroepitaxy (5 monolayers of Ge) in pulsed ion beam action growth mode at 350°C. Continuous ion-beam irradiation was found to induce dislocations around Ge dots. The results of kinetic Monte Carlo (KMC) simulations have shown that two mechanisms of ion-beam action can be responsible for stimulation of 2D-3D transition: (i) surface defect generation by ion impacts, and (ii) the enhancement of surface diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Brunner. Si/Ge nanostructures, Rep. Prog. Phys. 65: 27–72, 2002.

    Article  Google Scholar 

  2. A. V. Dvurechenskii, V. A. Zinovyev, V. A. Kudryavtsev, and J. V. Smagina. Effects of low-energy ion irradiation on Ge/Si heteroepitaxy from molecular beam. JETP Letters 72: 131–133, 2000.

    Article  Google Scholar 

  3. A. V. Dvurechenskii, V. A. Zinoviev, and Zh. V. Smagina. Self-organization of an ensemble of Ge nanoclusters upon pulsed irradiation with low-energy ions during heteroepitaxy on Si. JETP Letters 74: 267–269, 2001.

    Article  Google Scholar 

  4. P. N. Keating. Effect of invariance requirements on the elastic strain energy of crystals with applications to the diamond structure. Phys. Rev. 145: 637–645, 1966.

    Article  Google Scholar 

  5. A. V. Dvurechenskii, V. A. Zinovyev, V. A. Kudryavtsev, Zh. V. Smagina, P. L. Novikov, and S. A. Teys. Ion-beam assisted surface islanding during Ge MBE on Si. Phys. Low-Dim. Struct. 1/2: 303–314, 2002.

    Google Scholar 

  6. K. E. Khor and S. Das Sarma. Quantum dot self-assembly in growth of strained-layer thin films: A kinetic Monte Carlo study. Phys. Rev. B. 62: 16657–16664, 2000.

    Google Scholar 

  7. V. A. Zinovyev, L. N. Aleksandrov, V. A. Dvurechenskii, K.-H. Heinig, D. Stock. Modelling of layer-by-layer sputtering of Si(111) surfaces under irradiation with low-energy ions. Thin Solid Films 241: 167–170, 1994.

    Article  Google Scholar 

  8. J. A. Floro, B. K. Kellerman, E. Chason, S. T. Picraux, D. K. Brice, and K. M. Horn. Surface defect production on Ge(001) during low-energy ion bombardment. J. Appl. Phys. 77: 2351–2357, 1995.

    Article  Google Scholar 

  9. R. Ditchfield and E. G. Seebauer. Semiconductor surface diffusion: Effects of low-energy ion bombardment. Phys. Rev. B. 63: art. no. 125317, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Dvurechenskii, A.V. et al. (2005). Ge/Si Nanostructures with Quantum Dots Grown by Ion-Beam-Assisted Heteroepitaxy. In: Joyce, B.A., Kelires, P.C., Naumovets, A.G., Vvedensky, D.D. (eds) Quantum Dots: Fundamentals, Applications, and Frontiers. NATO Science Series, vol 190. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3315-X_9

Download citation

Publish with us

Policies and ethics