Skip to main content

Relationships between Seismic and Hydrological Properties

  • Chapter
Hydrogeophysics

Part of the book series: Water Science and Technology Library ((WSTL,volume 50))

Abstract

Reflection seismology is capable of producing detailed three-dimensional images of the earth’s interior at the resolution of a seismic wavelength. Such images are obtained by filtering and migrating the seismic data and give geometrical information about where in the earth the elastic moduli and mass densities change. However, information about which specific property has changed and by how much is not contained in the images. Hydrologists can use such migrated images to place geometrical constraints on their possible flow models, but must rely on well data to place constraints on the actual values of the hydrological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archie, G. E., The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54–62, 1942.

    Google Scholar 

  • Berge, P. A., H. F. Wang, and B. P. Bonner, Pore-pressure buildup coefficient in synthetic and natural sandstones, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 1135–1141, 1993.

    Article  Google Scholar 

  • Berryman, J. G., Long-wavelength propagation in composite elastic media I. Spherical inclusions, J. Acoust. Soc. Am., 68, 1809–1819, 1980a.

    Article  Google Scholar 

  • Berryman, J. G., Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions, J. Acoust. Soc. Am., 68, 1820–1831, 1980b.

    Article  Google Scholar 

  • Berryman, J. G., Effective stress for transport properties of inhomogeneous porous rock, J. Geophys. Res., 97,17,409–17,424, 1992.

    Google Scholar 

  • Berryman, J. G., Mixture theory for rock properties, in Rock Physics and Phase Relations — A Handbook of Physical Constants, edited by T. J. Ahrens, Am. Geophys. Union, Washington, DC, 1995.

    Google Scholar 

  • Berryman, J. G., and S. R. Pride, Models for computing geomechanical constants of double-porosity materials from the constituents’ properties, J. Geophys. Res., 107, 1000–1015, 2002.

    Article  Google Scholar 

  • Berryman, J. G., and H. F. Wang, The elastic coefficients of double-porosity models for fluid transport in jointed rock, J. Geophys. Res., 100, 24,611–24,627, 1995.

    Article  Google Scholar 

  • Berryman, J. G., and H. F. Wang, Dispersion in poroelastic systems, Phys. Rev. E, 64, 011303, 2001.

    Article  Google Scholar 

  • Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, J. Acoust. Soc. Am., 28, 168–178, 1956a.

    Article  Google Scholar 

  • Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am., 28, 179–191, 1956b.

    Article  Google Scholar 

  • Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482–1498, 1962.

    Article  Google Scholar 

  • Biot, M. A., and D. G. Willis, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24, 594–601, 1957.

    Google Scholar 

  • Bruggeman, D. A. G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Ann. Physik. (Leipzig), 24, 636–679, 1935.

    Article  Google Scholar 

  • Burridge, R., and J. B. Keller, Poroelasticity equations derived from microstructure, J. Acoust. Soc. Am., 70, 1140–1146, 1981.

    Article  Google Scholar 

  • Castagna, J. P., M. L. Batzle, and T. K. Kan, Rock physics-the link between rock properties and avo response, in Offset-Dependent Reflectivity — Theory and Practice of AVO Analysis, edited by J. P. Castagna and M. M. Backus, Soc. Explor. Geophys., Tulsa, 1993.

    Google Scholar 

  • Domenico, S. N., Elastic properties of unconsolidated porous reservoirs, Geophysics, 42, 1339–1368, 1977.

    Article  Google Scholar 

  • Dvorkin, J., G. Mavko, and A. Nur, Squirt flow in fully saturated rocks, Geophysics, 60, 97–107, 1995.

    Article  Google Scholar 

  • Frenkel, J., On the theory of seismic and seismoelectric phenomena in a moist soil, J. Physics (Soviet), 8, 230–241, 1944.

    Google Scholar 

  • Gassmann, F., Ăœber die Elastizität poröser Medien, Vierteljahrsschrift der Naturforschenden Gesellschaft in ZĂ¼rich, 96, 1–23, 1951.

    Google Scholar 

  • Gelinsky, S., and S. A. Shapiro, Dynamic-equivalent medium approach for thinly layered saturated sediments, Geophys. J. Internat., 128, F1–F4, 1997.

    Article  Google Scholar 

  • Goddard, J. D., Nonlinear elasticity and pressure-dependent wave speeds in granular media, Proc. R. Soc. Lond. A, 430, 105–131, 1990.

    Article  Google Scholar 

  • Gurevich, B., and S. L. Lopatnikov, Velocity and attenuation of elastic waves in finely layered porous rocks, Geophys. J. Internat., 121, 933–947, 1995.

    Article  Google Scholar 

  • Hardin, B. O., and F. E. Richart, Elastic wave velocities in granular soils, J. Soil Mech. Found. Div. ASCE, 89, 33–65, 1963.

    Google Scholar 

  • Hashin, Z., and S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11, 127–140, 1963.

    Article  Google Scholar 

  • Hill, R., Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11, 357–372, 1963.

    Article  Google Scholar 

  • Johnson, D. L., Theory of frequency dependent acoustics in patchy-saturated porous media, J. Acoust. Soc. Am., 110, 682–694, 2001.

    Article  Google Scholar 

  • Johnson, D. L., J. Koplik, and R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379–402, 1987.

    Article  Google Scholar 

  • Korringa, J., R. J. S. Brown, D. D. Thompson, and R. J. Runge, Self-consistent imbedding and the ellipsoidal model for porous rocks, J. Geophys. Res., 84, 5591–5598, 1979.

    Google Scholar 

  • Levy, T., Propagation of waves in a fluid-saturated porous elastic solid, Int. J. Engng. Sci., 17, 1005–1014, 1979.

    Article  Google Scholar 

  • Mavko, G., and D. Jizba, Estimating grain-scale fluid effects on velocity disperion in rocks, Geophysics, 56, 1940–1949, 1991.

    Article  Google Scholar 

  • Mavko, G., and A. Nur, Melt squirt in the asthenosphere, J. Geophys. Res., 80, 1444–1448, 1975.

    Article  Google Scholar 

  • Mavko, G., and A. Nur, Wave attenuation in partially saturated rocks, Geophysics, 44, 161–178, 1979.

    Article  Google Scholar 

  • Mavko, G., T. Mukerji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  • Murphy III, W. F., Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials, Ph.D. thesis, Stanford University, Stanford, California, 1982.

    Google Scholar 

  • Norris, A. N., Low-frequency dispersion and attenuation in partially saturated rocks, J. Acoust. Soc. Am., 94, 359–370, 1993.

    Article  Google Scholar 

  • O’Connell, R. J., and B. Budiansky, Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res., 82, 5719–5735, 1977.

    Google Scholar 

  • Pride, S. R., and J. G. Berryman, Connecting theory to experiment in poroelasticity, J. Mech. Phys. Solids, 46, 719–747, 1998.

    Article  Google Scholar 

  • Pride, S. R., and J. G. Berryman, Linear dynamics of double-porosity and dual-permeability materials. I. Governing equations and acoustic attenuation, Phys. Rev. E, 68, 036603, 2003a.

    Article  Google Scholar 

  • Pride, S. R., and J. G. Berryman, Linear dynamics of double-porosity and dual-permeability materials. II. Fluid transport equations, Phys. Rev. E, 68, 036604, 2003b.

    Article  Google Scholar 

  • Pride, S. R., A. F. Gangi, and F. D. Morgan, Deriving the equations of motion for porous isotropic media, J. Acoust. Soc. Am., 92, 3278–3290, 1992.

    Article  Google Scholar 

  • Pride, S. R., J. M. Harris, D. L. Johnson, A. Mateeva, K. T. Nihei, R. L. Nowack, J. W. Rector, H. Spetzler, R. Wu, T. Yamomoto, J. G. Berryman, and M. Fehler, Permeability dependence of seismic amplitudes, The Leading Edge, 22, 518–525, 2003.

    Article  Google Scholar 

  • Pride, S. R., J. G. Berryman, and J. M. Harris, Seismic attenuation due to wave-induced flow, J. Geophys. Res., 109, B01201,doi:10.1029/2003JB002639, 2004.

    Google Scholar 

  • Quan, Y., and J. M. Harris, Seismic attenuation tomography using the frequency shift method, Geophysics, 62, 895–905, 1997.

    Article  Google Scholar 

  • Roscoe, R., Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries, Rheologica Acta, 12, 404–411, 1973.

    Article  Google Scholar 

  • Sams, M. S., J. P. Neep, M. H. Worthington, and M. S. King, The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks, Geophysics, 62, 1456–1464, 1997.

    Article  Google Scholar 

  • Sato, H., and M. Fehler, Seismic wave propagation and scattering in the heterogeneous earth, Springer-Verlag, New York, 1998.

    Google Scholar 

  • Skempton, A. W., The pore-pressure coefficients A and B, Geotechnique, 4, 143–147, 1954.

    Article  Google Scholar 

  • Thompson, A. H., A. J. Katz, and C. E. Krohn, The microgeometry and transport properties of sedimentary rock, Advances in Physics, 36, 625–694, 1987.

    Article  Google Scholar 

  • Toksoz, M. N., C. H. Cheng, and A. Timur, Velocities of seismic waves in porous rocks, Geophysics, 41, 621–645, 1976.

    Article  Google Scholar 

  • Torquato, S., T. M. Truskett, and P. G. Debendetti, Is random close packing of spheres well defined?, Phys. Rev. Lett., 84, 2064–2067, 2000.

    Article  Google Scholar 

  • Tserkovnyak, Y., and D. L. Johnson, Capillary forces in the acoustics of patchy-saturated porous media, J. Acoust. Soc. Am., 114, 2596–2606, 2003.

    Article  Google Scholar 

  • Walton, K., The effective elastic moduli of a random packing of spheres, J. Mech. Phys. Solids, 35, 213–226, 1987.

    Article  Google Scholar 

  • Wang, H. F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton, NJ, 2000.

    Google Scholar 

  • White, J. E., Computed seismic speeds and attenuation in rocks with partial gas saturation, Geophysics, 40, 224–232, 1975.

    Article  Google Scholar 

  • White, J. E., N. G. Mikhaylova, and F. M. Lyakhovitsky, Low-frequency seismic waves in fluid-saturated layered rocks, Izvestija Academy of Sciences USSR, Phys. Solid Earth, 11, 654–659, 1975.

    Google Scholar 

  • Wu, R. S., and K. Aki, Multiple scattering and energy transfer of seismic waves: separation of scattering effect from intrinsic attenuation. II. Application of the theory to Hindu Kush region, Pure and Applied Geophys., 128, 49–80, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Pride, S.R. (2005). Relationships between Seismic and Hydrological Properties. In: Rubin, Y., Hubbard, S.S. (eds) Hydrogeophysics. Water Science and Technology Library, vol 50. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3102-5_9

Download citation

Publish with us

Policies and ethics