Skip to main content

Tritium in the Hydrologic Cycle

  • Chapter
Isotopes in the Water Cycle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, L.J., Sevel, T. (1974) Six years of environmental tritium profiles in the unsaturated and saturated zones, Gronhoj, Denmark. Isotope Techniques in Groundwater Hydrology, Vol.1 (Proc. Symp.) IAEA, Vienna, 3–20.

    Google Scholar 

  • Amin, I.E., Campana, M.E. (1996) A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems. J. Hydrol. 179, 1–21.

    Article  Google Scholar 

  • Bigeleisen, J. (1962) Correlation of tritium and deuterium isotope effects. Tritium in the Physical and Biological Sciences. Vol. 1., IAEA, Vienna, 161–168.

    Google Scholar 

  • Brown, R.M. (1961) Hydrology of tritium in the Ottawa Valley. Geochim. Cosmochim. Acta 21, 199–216.

    Google Scholar 

  • Buttlar, H.V., Libby, W.F (1955) Natural distribution of cosmic ray produced tritium, 2. J. Inorg. Nucl. Chem. 1, 75–95.

    Google Scholar 

  • Burger, L.L. (1979) Distribution and reactions of tritiated hydrogen and methane. Behaviour of Tritium in the Environment. IAEA, Vienna, 47–64.

    Google Scholar 

  • Bush, K.A. (1988) Identification of Savannah River water on the South Atlantic Bight Shelf using tritium. J. Geophys. Res. 93, 9315–9331.

    Google Scholar 

  • Carmi, I., Gat, J.R. (1994) Estimating the turnover time of groundwater reservoirs by the helium-3/tritium method in the era of declining atmospheric tritium levels: opportunities and limitations in the time bracket 1990–2000. Isr. J. Earth Sci. 43, 249–253.

    Google Scholar 

  • Carter, M.W., Moghissi, A.A. (1977) Three decades of nuclear testing. Health Phys. 33, 55–71.

    Google Scholar 

  • Cook, P.G., Jolly, I.D., Leaney, F.W., Walker, G.R., Allan, G.L., Fifield., L.K., Allison, G.B. (1994) Unsaturated zone tritium and chlorine 36 profiles from southern Australia: their use as tracers of soil water movement. Water Resour. Res. 30, 1709–1719.

    Article  Google Scholar 

  • Cook, P.G., Walker, G. (1996) Evaluation of the use of 3H and 36Cl to estimate groundwater recharge in arid and semi-arid environments. Isotopes in Water Resources Management. IAEA, Vienna, 397–403.

    Google Scholar 

  • Dillon, M.A., Aggarwal., P.K. (1999) A combined vadose zone-saturated zone model for tritium and helium transport in groundwater. IAEA-SM-361/32.

    Google Scholar 

  • Dockins, K.O., Bainbridge, A.E., Houtermans, J.C., Suess, H.E. (1967) Tritium in the mixed layer of the North Pacific Ocean. Radioactive Dating and Methods of Low-Level Counting. IAEA, Vienna, 129–142.

    Google Scholar 

  • Ehhalt, D.H. (1973) On the uptake of tritium by soil water and groundwater. Water Resour. Res. 9, 1073–1074.

    Google Scholar 

  • Engesgaard, P., Jenses, K.H., Molson, J., Frind, E.O., Olsen, H. (1996) Large-scale dispersion in a sandy aquifer: simulation of subsurface transport of environmental tritium. Water Resour. Res. 32, 3253–3266.

    Google Scholar 

  • Eriksson, E. (1965) An account of the major pulses of tritium and their effects in the atmosphere. Tellus 17, 118–130.

    Google Scholar 

  • Fontes, J.-Ch., Pouchan, P., Saliege, J.F., Zuppi, G.M. (1980) Environmental isotope study in the groundwater systems of the Republic of Djibouti. Arid-Zone Hydrology: Investigations with Isotope Techniques. IAEA, Vienna, 237–262.

    Google Scholar 

  • Foster, S.S.D., Smith-Carrington, A. (1980) The interpretation of tritium in the Chalk unsaturated zone. J. Hydrol. 46, 343–364.

    Article  Google Scholar 

  • Gat, J.R., Karfunkel, U., Nir, A. (1962) Tritium content of rainwater from the Eastern Mediterranean area. Tritium in the Physical and Biological Sciences. Vol.1. IAEA, Vienna, 41–54.

    Google Scholar 

  • Gibson, J.J., Aggarwal., P., Hogan, J., Kendall, C., Martinelli, L.A, Stichler, W., Rank, D., Goni, I., Choudhry, M., Gat, J., Bhattacharya, S., Sugimoto, A., Fekete, B., Pietroniro, A., Maurer, T., Panarello, H. Stone, D., Seyler, P., Maurice-Bourgoin, L., Herzeg, A. (2002) Isotope studies in large river basins: A new global research focus. E O S 83, 613–617.

    Google Scholar 

  • Gourcy, L.L. et al. (this volume).

    Google Scholar 

  • Grosse, A.V., Johnston, W.M., Wolfgang, R.L., Libby, W.F. (1951) Tritium in Nature. Science 113, 1–2.

    Google Scholar 

  • Gvirtzman, H., Margaritz, M. (1986) Investigation of water movement in the unsaturated zone under an irrigated area using environmental tritium. Water Resour. Res. 22, 635–642.

    Google Scholar 

  • Hayes, D.W. (1979) Tritium in the Savannah River estuary and adjacent marine waters. Behaviour of Tritium in the Environment. IAEA, Vienna, 271–281.

    Google Scholar 

  • Hoehn, E., Santschi, P.H. (1987) Interpretation of tracer displacement during infiltration of river water to groundwater. Water Resour. Res. 23, 633–640.

    Google Scholar 

  • Herczeg, A.L., Imboden, D.M. (1988) Tritium hydrologic studies in four closed-basin lakes in the Great Basin, USA. Limnol. Oceanogr. 33, 157–173.

    Google Scholar 

  • Hofer, M., Peeters, F., Aeschbach-Hertig, W., Brennwald, M., Holocher, J., Livingstone, D.M., Romanovski, V., Kipfer, R. (2002) Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers. Limnol. Oceanogr. 47, 1210–1216.

    Article  Google Scholar 

  • Hohmann, R., Hofer, M., Kipfer, R., Peeters, F., Imboden, D.M., Baur, H., Shimaraev, M.N. (1998) Distribution of helium and tritium in Lake Baikal. J. Geophys. Res. 103, 12823–12838.

    Article  Google Scholar 

  • Houle, D., Carignan, R., Roberge, J. (2004) The transit of 35SO4 −2 and 3H2O added in situ to soil in a boreal coniferous forest. Water Air and Soil Poll. 4, 501–517.

    Google Scholar 

  • Imboden, D.M., Weiss, R.F., Craig, H., Michel, R.L., Goldman, C.R. (1977) Lake Tahoe geochemical study. 1. Lake chemistry and tritium mixing study. Limnol. Oceanogr. 22, 1039–1051.

    Google Scholar 

  • International Atomic Energy Agency (1962) Tritium in the Physical and Biological Sciences. Vol. 1. IAEA, Vienna, 369 p

    Google Scholar 

  • International Atomic Energy Agency (1981) Statistical Treatment of Environmental Isotope Data in Precipitation. Technical Reports Series 206, IAEA, Vienna, 255 p.

    Google Scholar 

  • International Atomic Energy Agency (1992) Statistical Treatment of Environmental Isotope Data in Precipitation. Technical Reports Series 331, IAEA, Vienna, 781 p.

    Google Scholar 

  • Kaufmann, W.J., Todd, D.K. (1962) Application of tritium tracer to canal seepage measurements. Tritium in the Physical and Biological Sciences, Vol. I. IAEA, Vienna, 83–94.

    Google Scholar 

  • Lal., D., Peters, B. (1967) Cosmic ray produced radioactivity on the earth. Encyclopedia of Physics. Vol. 46 (S. Flugge, Ed.), Springer, New York, 407–434.

    Google Scholar 

  • Lehmann, B.E., Davis, S.N., Fabryka-Martin, J.T. (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour. Res. 29, 2027–2040.

    Article  Google Scholar 

  • Libby, W.F. (1962) Tritium geophysics: Recent data and results. Tritium in the Physical and Biological Sciences, Vol. 1. IAEA, Vienna, 5–32.

    Google Scholar 

  • MaÅ‚oszewski, P., Zuber, A. (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. Models and their applicability. J. Hydrol. 57, 207–231.

    Google Scholar 

  • Martell, E.A. (1963) On the inventory of artificial tritium and its occurrence in atmospheric methane. J. Geophys. Res. 68, 3759–3769.

    Google Scholar 

  • Mason, A.S., Ostlund., H.G. (1979) Atmospheric HT and HTO: V. Distribution and large scale circulation. Behaviour of Tritium in the Environment. IAEA, Vienna, 1–15.

    Google Scholar 

  • McMahon, P.B., Dennehy, K.F., Ellett, K., Sophocleous, M., Paschke, S., Michel, R.L., Hurlbut, D. (2003) Evaluation of Recharge Fluxes to the Central High Plains Aquifer. Southwestern Kansas, 2000–2001. US Geological Survey Water Resources Investigation Report 03-4171, pg 32.

    Google Scholar 

  • Michel, R.L. (1976) Tritium inventories of the world oceans and their implications. Nature 263, 103–106.

    Article  Google Scholar 

  • Michel, R.L. (1992) Residence times in river basins as determined by analysis of long-term tritium records. J. Hydrol. 130, 367–378.

    Article  Google Scholar 

  • Michel, R.L., Suess, H.E. (1978) Tritium in the Caspian Sea. Earth Planet. Sci. Lett., 39, 309–312.

    Article  Google Scholar 

  • Michel, R.L., Kraemer, T.F. (1995) Use of isotopic data to estimate water residence times of the Finger Lakes, New York. J. Hydrol. 164, 1–18.

    Article  Google Scholar 

  • Miller, L.G., Aiken, G.R. (1996) Effects of glacial meltwater inflows and moat freezing on mixing in an ice-covered Antarctic lake as interpreted from stable isotope and tritium distributions. Limnol. Oceanogr. 43, 966–976.

    Google Scholar 

  • Miskel, J.A. (1973) Production of tritium by nuclear weapons. Tritium (A. Moghissi, Ed.) Messenger Graphics, Las Vegas, 79–85.

    Google Scholar 

  • Murphy, C.E. (1993) Tritium transport and cycling in the environment. Health Physics 65, 683–697.

    Google Scholar 

  • Murphy, C.E., Pendergast, M.M. (1979) Environmental transport and cycling of tritium in the vicinity of atmospheric releases. Behaviour of Tritium in the Environment. IAEA, Vienna, 361–372.

    Google Scholar 

  • Nir, A. (1964) On the interpretation of tritium ‘age’ measurements of groundwater. J. Geophys. Res. 69, 2589–2595.

    Google Scholar 

  • O’Brien, K., Lerner, A.D., Shea, M.A., Smart, D.F. (1992) The production of cosmogenic isotopes in the Earth’s atmosphere and their inventories. The Sun in Time, (C.P. Sonett, M.S. Giampapa, M.S. Matthew, Eds) Univ. Arizona Press, 317–342.

    Google Scholar 

  • Ostlund, H.G., Berry, E.X. (1970) Modification of atmospheric tritium and water vapour by Lake Tahoe. Tellus 22, 463–465.

    Google Scholar 

  • Peeters, F., Kipfer, R., Achermann, D., Hofer, M., Aeschbach-Hertig, W., Beyerle, U., Imboden, D.M., Rozanski, K., Froehlich, K. (2000) Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep-Sea Res. 47, 621–654.

    Google Scholar 

  • Phillips, F.M., Mattick, J.L., Duval., T.A. (1988) Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapour movement in desert soils. Water Resour. Res. 24, 1877–1891.

    Google Scholar 

  • Plummer, L.N. Dating of young groundwater. (This volume).

    Google Scholar 

  • Przewlocki, K., Yurtsever, Y. (1974) Some conceptual mathematical models and digital simulation approach to the use of tracers in hydrological systems. Isotope Techniques in Groundwater Hydrology, Vol. 2, IAEA, Vienna, 425–450.

    Google Scholar 

  • Quay, P.D., Broecker, W.S., Hesslein, R.H., Schindler, D.W. (1980) Vertical diffusion rates determined by tritium tracer experiments in the thermocline and hypolimnion of two lakes. Limnol. Oceanogr. 25(2) 201–218.

    Google Scholar 

  • Rank, D., Alder, L., Froehlich, K., Rozanski, K., Stichler, W. (1998) Hydrological parameters and climatic signals derived from long-term tritium and stable isotope time series of the River Danube. Isotopic Techniques in the Study of Environmental Change. IAEA, Vienna, 191–205.

    Google Scholar 

  • Reilly, T.E., Plummer, L.N., Phillips, P.J., Busenberg, E. (1994) The use of simulation and multiple environmental tracers to quantify flow in a shallow aquifer. Water Resour. Res. 30, 421–433.

    Article  Google Scholar 

  • Revelle, R., Suess, H.E. (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9, 18–27.

    Article  Google Scholar 

  • Rose, S. (1993) Environmental tritium systematics of baseflow in Piedmont Province watersheds, Georgia, USA. J. Hydrol. 143, 191–216.

    Article  Google Scholar 

  • Scanlon, B.R., Goldsmith, R.S. (1997) Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resour. Res. 33, 2239–2252.

    Article  Google Scholar 

  • Scripps Institution of Oceanography (1974) Lake Tanganyika Geochemical and Hydrographic Survey: 1973 Expedition. S I O Reference Series 75-5, 83 p.

    Google Scholar 

  • Siegel, D.I., Jenkins, D.T. (1987) Isotopic analysis of groundwater flow systems in a wet alluvial fan, southern Nepal. Isotope Techniques in Water Resources Development. IAEA, Vienna, 475–482.

    Google Scholar 

  • Smiles, D.E., Gardner, W.R., Schulz, R.K. (1995) Diffusion of tritium in arid disposal sites. Water Resour. Res. 31, 1483–1488.

    Article  Google Scholar 

  • Solomon, D.K., Poreda, R.J., Schiff, S.L., Cheng, J.A. (1992) Tritium and helium-3 as groundwater age tracers in the Borden aquifer. Water Resour. Res. 28, 741–755.

    Google Scholar 

  • Steinhorn, H. (1985) The disappearance of the long term meromictic stratification of the Dead Sea. Limolog. Oceanogr. 30, 451–472.

    Google Scholar 

  • Stewart, G.L, 1966. Experiences using tritium in Scientific Hydrology. Proceedings of the Sixth International Conference on Radiocarbon and Tritium Dating. US Atomic Energy Agency Rep., 643–658.

    Google Scholar 

  • Striegl, R.G., Healy, R.W., Michel R.L., Prudic, D.E. (1998) Tritium in Unsaturated Zone Gases and Air at the Armagosa Desert Research Site, in Spring and River Water, near Beatty, Nevada, 1997. U.S. Geological Survey Open-File Report 97-778, 13p.

    Google Scholar 

  • Suess, H. (1969) Tritium geophysics as an international research project. Science 163, 1405–1410.

    Google Scholar 

  • Thatcher, L.L. (1962), The distribution of fallout over North America. Bulletin of the International Association of Scientific Hydrology 7, 48–58.

    Google Scholar 

  • Torgersen, T., Top, Z., Clarke, W.B., Jenkins, W.F., Broecker, W.S. (1977) A new method for physical limnology — tritium-helium-3 ages — results for Lakes Erie, Huron, and Ontario. Limnol Oceanogr. 22, 181–193.

    Article  Google Scholar 

  • Torgersen, T., Hammond, D.E., Clarke, W.B., Peng, T-H. (1981) Fayetteville, Green Lake, New York: 3H-3He water mass ages and secondary chemical structure. Limonol. Oceanogr. 26, 110–122.

    Google Scholar 

  • Vollmer, M.K., Weiss, R.F., Schlosser, P., Williams, R.T. (2002) Deep-water renewal in lake Issy-Kul. Geophys. Res. Lett. 29, 2231, doi 10.129/2002GLO14763.

    Google Scholar 

  • Wood, W.W., Sanford, W.E., 1995, Chemical and isotopic methods for quantifying ground-water recharge in a regional semiarid environment. Ground Water, 33, 458–468.

    Article  Google Scholar 

  • Zoellmann, K., Kinzelback, W., Fulda, C. (2001) Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J. Hydrol. 240, 187–205.

    Article  Google Scholar 

  • Zuber, A. (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. Handbook of Environmental Isotope Geochemistry (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, Amsterdam, 1–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Michel, R. (2005). Tritium in the Hydrologic Cycle. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_5

Download citation

Publish with us

Policies and ethics