Skip to main content

Highly Altered Organic Matter on Earth: Biosignature Relevance

  • Chapter
Astrobiology: Future Perspectives

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 305))

Abstract

On earth, organic matter of biological origin is subjected to various alteration processes, dominated by oxidation and thermal metamorphism due to deep burial, typically a result of plate-tectonic processes. Other alteration processes unrelated to the oxidizing atmosphere and plate tectonics include impact metamorphism, irradiation and thermal degradation of dissolved organic species. The implications of these transformation processes as observed on earth for the use of carbon forms as biosignatures on other planetary bodies are discussed. Carbon minerals, such as graphite and diamond, are potential biosignatures, their major advantage being a high degree of stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, D.E.: 1999, Nature of hydrothermal alteration in subaqueous impact craters: Sudbury structure, Ontario, Canada. PhD Thesis, Carlton University, Ottawa, Canada.

    Google Scholar 

  • Becker, L., Poreda, R.J. and Bada, J.L., 1996. Extraterrestrial helium trapped in fullerenes in the Sudbury impact structure. Science, 272: 249–252.

    Article  ADS  Google Scholar 

  • Botta, O. and Bada, J.L., 2002. Extraterrestrial organic compounds in meteorites. Surveys in Geophysics, 23: 411–467.

    Article  ADS  Google Scholar 

  • Bunch, T.E. et al., 1999. Carbonaceous matter in the rocks of the Sudbury Basin, Ontario, Canada. In: B.O. Dressler and V.L. Sharpton (Editors), Large meteorite impacts and planetary evolution II, Geol. Soc. America. Spec. Paper 399, pp. 331–343.

    Google Scholar 

  • Buseck, P.R., 2002. Geological fullerenes: review and analysis. Earth Plaet. Sci. Lett., 2003: 781–792.

    Article  ADS  Google Scholar 

  • Daulton, T.L. and Ozima, M., 1996. Radiation-induced diamond formation in uranium-rich carbonaceous materials. Science, 271: 1260–1263.

    Article  ADS  Google Scholar 

  • De, S., Heaney, P.J., Hargraves, R.B., Vicenzi, E.P. and Taylor, P.T., 1998. Microstructural observations of polycrystalline diamond: a contribution to the carbonado conundrum. Earth and Planetary Science Letters, 164: 421–433.

    Article  ADS  Google Scholar 

  • El Goresy, A. and Donnay, G., 1968. A new allotropic form of carbon from the Ries crater. Science, 161: 263–264.

    Article  Google Scholar 

  • Eldridge, C.S., Compston, W., Williams, I.S., Harris, J.W. and Bristow, J.W., 1991. Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 353: 649–653.

    Article  ADS  Google Scholar 

  • Ellsworth, R.V., 1928. Thucholite, a remarkable primary carbon mineral from the vicinity of Parry Sound, Ontario. American Mineralogist, 13: 419–442.

    Google Scholar 

  • Fedo, C.M. and Whitehouse, M.J., 2002. Metasomatic Origin of Quartz-Pyroxene Rock, Akilia, Greenland, and Implications for Earth’s Earliest Life. Science, 296: 1448–1452.

    Article  ADS  Google Scholar 

  • Fettke, C.R. and Sturges, F.C., 1933. Structure of carbonado or black diamond. American Mineralogist, 18: 172–174.

    Google Scholar 

  • Gilmour, I. et al., 2003. Geochemistry of carbonaceous impactites from the Gardnos impact structure, Norway. Geochimica et Cosmochimica Acta, 67(20): 3889–3903.

    Article  ADS  Google Scholar 

  • Gilmour, I. et al., 1992. Terrestrial carbon and nitrogen isotopic ratios from Cretaceous-Tertiary boundary nanodiamonds. Science, 258: 1624–1626.

    Article  ADS  Google Scholar 

  • Gurov, E.P., Gurova, E.P. and Rakitskaya, R.B., 1995. Impact diamonds in the craters of the Ukrainian shield. Meteoritics, 30: 515–516.

    ADS  Google Scholar 

  • Haggerty, S.E., 1995. Carbonado, clathrate and cavitation: a model for the acoustic induction of diamond. 6th Int. Kimberlite Conference, Extended Abstracts: 217–219.

    Google Scholar 

  • Haggerty, S.E., 1998. Diamond-carbonado: Geological implications and research-industrial applications. Proc. 5th NIRIM Intl. Ssymposium in Advances Materials: 39–42.

    Google Scholar 

  • Hallbauer, D.K., 1975. The plant origin of Witwatersrand “carbon”. Min. Sci. Eng., 7: 111–131.

    Google Scholar 

  • Hallbauer, D.K. and Van Warmelo, K.T., 1974. Fossilized plants in thucholite from Precambrian rocks of the Witwatersrand, South Africa. Precambrian Research, 1: 199–212.

    Article  Google Scholar 

  • Heyman, D. et al., 1999. Origin of carbonaceous matter, fullerenes, and elemental sulfur in rocks of the Whitewater group, Sudbury impact structure, Ontario, Canada. In: B.O. Dressler and V.L. Sharpton (Editors), Large meteorite impacts and planetary evolution II, Geol. Soc. America. Spec. Paper 399, pp. 345–360.

    Google Scholar 

  • Hoefs, J. and Schidlowski, M., 1967. Carbon isotope composition of carbonaceous matter from the Precambrian of the Witwatersrand system. Science, 155: 1096–1097.

    Article  ADS  Google Scholar 

  • Hofmann, B., 1990a. Possible microbiological origin of reduction spots in red beds. In: F. C.B. and H. T.C. (Editors), First International Symposium on Microbiology of the Deep Subsurface. WSRC Information Services, Orlando, Florida, pp. 2-125–2-133.

    Google Scholar 

  • Hofmann, B., 1990b. Reduction spheroids from northern Switzerland: Mineralogy, geochemistry and genetic models. Chemical Geology, 81: 55–81.

    Article  Google Scholar 

  • Hofmann, B., 1991. Mineralogy and geochemistry of reduction spheroids in red beds. Mineralogy and Petrology, 44: 107–124.

    Article  ADS  Google Scholar 

  • Hofmann, B., 1993. Organic matter associated with mineralized reduction spots in red beds. In: J. Parnell, H. Kucha and P. Landais (Editors), Bitumens in ore deposits. Springer, pp. 362–378.

    Google Scholar 

  • Hofmann, B.A. and Bernasconi, S.M., 1998. Review of occurrences and carbon isotope geochemistry of oxalate minerals: implications for the origin and fate of oxalate in diaganetic and hydrothermal fluids. Chem. Geol., 149: 127–146.

    Article  Google Scholar 

  • Hough, R.M. et al., 1995. Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature, 378: 41–44.

    Article  ADS  Google Scholar 

  • Hough, R.M., Gilmour, I., Pillinger, C.T., Langenhorst, F. and Montanari, A., 1997. Diamonds from the iridium-rich K-T boundary layer at Arroyo el Mimbral, Tamaulipas, Mexico. Geology, 25(11): 1019–1022.

    Article  ADS  Google Scholar 

  • Kagi, H., Takahashi, K., Hidaka, H. and Masuda, A., 1994. Chemical properties of Central African carbonado and its genetic implications. Geochimica et Cosmochimica Acta, 58(12): 2629–2638.

    Article  ADS  Google Scholar 

  • Kerr, P.F., Graf, D.L. and Ball, S.H., 1948. Carbonado from Venezuela. American Mineralogist, 33: 251–255.

    Google Scholar 

  • Kerridge, J.F., 1985. Carbon, hydrogen and nitrogen in carbonaceous meteorites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta, 49: 1707–1714.

    Article  ADS  Google Scholar 

  • Koeberl, C. et al., 1997. Diamonds from the Popigai impact structure, Russia. Geology, 25(11): 967–970

    Article  ADS  Google Scholar 

  • Masaitis, V.L. et al., 1999. Impact diamonds in the suevitic breccias of the Black Member of the Onaping formation, Sudbury structure, Ontario, Canada. Geol. Soc. America Spec. Paper, 339: 317–321.

    Google Scholar 

  • Masaitits, V.L., 1998. Popigai crater: Origin and distribution of diamond-bearing impactites. Meteoritics and Planetary Science, 33(349–359).

    Google Scholar 

  • Mojzsis, S.J. et al., 1996. Evidence for life on Earth before 3800 million years ago. Nature, 384: 55–59.

    Article  ADS  Google Scholar 

  • Mojzsis, S.J. et al., 2002. Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science, 298: 917.

    Article  Google Scholar 

  • Mossman, D. et al., 2003. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff. Geology, 31(3): 255–258.

    Article  ADS  Google Scholar 

  • Nagy, B. et al., 1991. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors. Nature, 354: 472–475.

    Article  ADS  Google Scholar 

  • Ozima, M. and Tatsumoto, M., 1997. Radiation-induced diamond crystallization: origin of carbonados and its implications on meteorite nano-diamonds. Geochim. Cosmochim. Acta, 61(2): 369–376.

    Article  ADS  Google Scholar 

  • Ozima, M., Zashu, S., Tomura, K. and Matsuhisa, Y., 1991. Constraints from noble-gas contents on the origin of carbonado diamonds. Nature, 351: 472–474.

    Article  ADS  Google Scholar 

  • Parnell, J., 1985. Uranium/rare earth-enriched hydrocarbons in Devonian sandstones, northern Scotland. N. Jb. Miner. Mh., 1985, H. 3: 132–144.

    Google Scholar 

  • Parnell, J., 1990. Mineralogy of rare-earth bearing “thucholite” from Parry Sound, Ontario. Canadian Mineralogist, 28: 357–362.

    Google Scholar 

  • Parnell, J., 2003. Mineral radioactivity promotes organic complexity on rocky planets. Lunar and Planetary Science, 34: Abstract 1119.

    ADS  Google Scholar 

  • Pratesi, G., Giudice, A.L., Vshnevski, S., Manfredotti, C. and Cipriani, C., 2003. Cathodoluminescence investigations on the Popigai, Ries, and Lappajärvi impact diamonds. American Mineralogist, 88: 1778–1787.

    Google Scholar 

  • Rasmussen, B., Glover, J.E. and Foster, C.B., 1993. Polymerisation of hydrocarbons by radioactive minerals in sedimentary rocks: Diagenetic and economic significance. In: J. Parnell, H. Kucha and P. Landais (Editors), Bitumens in ore deposits. Springer, Berlin, pp. 490–509.

    Google Scholar 

  • Schmitt, R.T., Siebenschock, M. and Stöffler, D., 1999. Distribution of impact diamonds in the Ries crater, Germany. Meteoritics and Planetery Science, 34S: A102.

    ADS  Google Scholar 

  • Shelkov, D., Verchovsky, A.B., Milledge, H.J. and Pillinger, C.T., 1995. Carbonado: Am comparison between Brazilian and Ubangui sources based on carbon and nitrogen isotopes. 6th Int. Kimberlite Conference, Extended Abstracts: 518–520.

    Google Scholar 

  • Shelkov, D.A., Verchovsky, A.B., Milledge, H.J., Kaminsky, F.V. and Pillinger, C.T., 1998. Carbon, nitrogen, argon and helium study of impact diamonds from Ebeliakh alluvial deposits and Popigai crater. Meteoritics & Planetary Science, 33: 985–992.

    Article  ADS  Google Scholar 

  • Shibata, K., Kamioka, H., Kaminsky, F.V., Koptil, V.I. and Svisero, D.P., 1993. Rare earth element patterns of carbonado and yakutite: evidence for their crustal origin. Mineralogical Magazine, 57: 607–611.

    Article  Google Scholar 

  • Smith, V.J. and Dawson, J.B., 1985. Carbonado: diamond aggregates from early impacts of crustal rocks? Geology, 13: 342–343.

    Article  ADS  Google Scholar 

  • Spangenberg, J. and Frimmel, H.E., 2001. Basin-internal derivation of hydrocarbons in the Witwatersrand basin, South Africa: evidence from bulk and molecular 13C data. Chemical Geology, 173: 339–355.

    Article  Google Scholar 

  • Spence, H.S., 1928. A remarkable occurrence of thucholite and oil in a pegmatite dyke, Parry Sound district, Ontario. American Mineralogist, 15(11): 499–520.

    Google Scholar 

  • Trueb, L.F. and Butterman, W.C., 1969. Carbonado: a microstructural study. American Mineralogist, 54: 412–425.

    Google Scholar 

  • Trueb, L.F. and De Wys, E.C., 1971. Carbon from Ubangi — a microstructural study. American Mineralogist, 56: 1252–1268.

    Google Scholar 

  • van Zuilen, M.A., Lepland, A. and Arhenius, G., 2002. Reassessing the evidence for the earliest traces of life. Nature, 418: 627–630.

    Article  ADS  Google Scholar 

  • Vicenzi, E.P. and Heaney, P.J., 2001. The carbon and nitrogen isotopic composition of carbonado diamond: an in situ study. 11th V.M. Goldschmidt Conference Abstract 3886.

    Google Scholar 

  • Vishnevsky, S. and Raitala, J., 2000. Impact diamonds as indicators of shock metamorphism in strongly-reworked Precambrian impactites. In: S. Bhattacharji, G.M. Friedman, H.J. Neugebauer and A. Seilacher (Editors), Impacts and the Early Earth, Lecture Notes in Earth Sciences, V. 91, I. Gilmour and C. Koeberl, Editors. Springer, Berlin, pp. 229–247.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hofmann, B.A. (2004). Highly Altered Organic Matter on Earth: Biosignature Relevance. In: Ehrenfreund, P., et al. Astrobiology: Future Perspectives. Astrophysics and Space Science Library, vol 305. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2305-7_13

Download citation

Publish with us

Policies and ethics