Skip to main content

Molecular Reaction Stereodynamics: In Search of Paths to Overcome Steric Hindrances to Reactivity

  • Conference paper
Theory of Chemical Reaction Dynamics

Conclusions

In the preceding sections we have listed experimental progress and theoretical analysis on the theme of how to overcome obstacles to reactivity by acting on the preexponential (steric factor) ingredient of the Arrhenius equation, a not so often exploited path with respect to the conventional catalysis mechanisms which operate mainly on the activation energy. Our point of view has been at the level of microscopic elementary processes and it is anticipated that possible practical applications will necessitate further effort at this level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pirani F., Bartolomei M., Aquilanti V., Scotoni M., Vescovi M., Ascenzi D., Bassi D., and Cappelletti D. (2003), J. Chem. Phys. 119, 265.

    Article  CAS  Google Scholar 

  2. Shimizu Y., Che D.-C., Hashinokuchi M., Fukuyama T., Suzui M., M. Watanabe, and Kasai T. (2003), Rev. Scient. Instrum. 74, 3749.

    Google Scholar 

  3. Aquilanti V., Ascenzi D., Cappelletti D., and Pirani F. (1994), Nature 371, 399; Aquilanti V., Ascenzi D., Cappelletti D., and Pirani F. (1995), J. Phys. Chem. 99, 13620.

    Article  Google Scholar 

  4. Aquilanti V., Ascenzi D., Cappelletti D., Fedeli R., and Pirani F. (1997), J. Phys. Chem. A 101, 7648.

    CAS  Google Scholar 

  5. Toennies J. P. (1962), Discuss. Faraday Soc. 33, 96; Bennewitz H. G., Kramer K. H., Paul W., and Toennies J. P. (1964), Z. Phys. 84, 177; Lübert A., Rotzoll G., and Günther F. (1978), J. Chem. Phys. 69, 5174.

    Google Scholar 

  6. Kramer K. H. and Bernstein R. B. (1964), J. Chem. Phys. 40, 200; Brooks P. R. and Jones E. M. (1966), J. Chem. Phys. 45, 3449; Brooks P. R. and Jones E. M. (1982) Ber. Bunsenges. Phys. Chem. 86, 413; Kasai T., Fukawa T., Matsunami T., Che D.-C., Ohashi K., Fukunishi Y., Ohoyama H., and Kuwata K. (1993), Rev. Sci. Instrum. 64, 1150.

    Article  CAS  Google Scholar 

  7. Karny Z., Estler R. C., and Zare R. N. (1978), J. Chem. Phys. 69, 5199; Treffers M. A. and Korving J. (1983), Chem. Phys. Lett. 97, 342; Hoffmeister M., Schleysing R., and Loesch H. J. (1987), J. Phys. Chem. 91, 5441; Mattheus A., Fischer A., Ziegler G., Gottwald E., and Bergmann K. (1986), Phys. Rev. Lett. 56, 712; Hefter U., Ziegler G., Mattheus A., Fischer A., and Bergmann K. (1986), J. Chem. Phys. 85, 286; Mc-Caffery A. J., Reid K. L., and Whitaker B. J. (1988), Phys. Rev. Lett. 61, 2085; Tsubouchi M., Whitaker B. J., Wang R. L., Kohguchi H., and Suzuki T. (2001), Phys. Rev. Lett. 86,4500.

    Article  CAS  Google Scholar 

  8. Loesch H. J. and Remscheid A. (1990), J. Chem. Phys. 93, 4779; Friedrich B. and Herschbach D. R. (1991), Nature 353, 412; Friedrich B. and Herschbach D. R. (1991) Z. Phys. D: At., Mol. Clusters 18, 153; Friedrich B. and Herschbach D. R. (1992) 24, 25.

    Article  CAS  Google Scholar 

  9. Friedrich B. and Herschbach D. R. (1995), Phys. Rev. Lett. 74, 4623; Seideman T (1995), J. Chem. Phys. 103, 7887; Kim W. and FelkerP. M. (1996), J. Chem. Phys. 104, 1147; Larsen J. J., Hald K., Bjerre N., and Stepelfeldt H. (2000), Phys. Rev. Lett. 85, 2470; Velotta R., Hay N., Mason M. B., Castillejo M., and Marangos J. P. (2001), Phys. Rev. Lett. 87, 183901.

    Article  CAS  Google Scholar 

  10. Sinha M. P., Caldwell C. D., and Zare R. N. (1974), J. Chem. Phys. 61, 491.

    Article  CAS  Google Scholar 

  11. Hefter U., Ziegler G., Mattheus A., Fischer A., and Bergmann K. (1986), J. Chem. Phys. 85, 286.

    Article  CAS  Google Scholar 

  12. Rubahn H. G. and Toennies J. P. (1988), J. Chem. Phys. 89, 287.

    Article  CAS  Google Scholar 

  13. Visser A. G., Bekooy J. P., van der Meij L. K., de Vreugd C., and Korving J. (1977), Chem. Phys. 20, 391.

    Article  CAS  Google Scholar 

  14. Sanders W. R. and Anderson J. B. (1984), J. Phys. Chem. 88, 4479.

    CAS  Google Scholar 

  15. Pullmann D. P., Friedrich B., and Herschbach D. R. (1990), J. Chem. Phys. 93, 3224.

    Google Scholar 

  16. Freidrich B., Pullmann D. P., and Herschbach D. R. (1991), J. Phys. Chem. 95, 8118.

    Google Scholar 

  17. Saleh A. J. and McCaffery A. J. (1993), J. Chem. Soc., Faraday Trans. 89, 3217.

    Article  CAS  Google Scholar 

  18. Weida M. J. and Nesbitt D. J. (1994), J. Chem. Phys. 100, 6372.

    Article  CAS  Google Scholar 

  19. Harich S. and Wodtke A. M. (1997), J. Chem. Phys. 107, 5983.

    Article  CAS  Google Scholar 

  20. Fair J. R. and Nesbitt D. (1999), J. Chem. Phys. 111, 6821.

    Article  CAS  Google Scholar 

  21. Pullmann D. P., Friedrich B., and Herschbach D. R. (1995), J. Phys. Chem. 99, 7407.

    Google Scholar 

  22. Aquilanti V., Ascenzi D., De Castro-Vitores M., Pirani F., and Cappelletti D. (1999), J. Chem. Phys. 111, 2620.

    Article  CAS  Google Scholar 

  23. Aquilanti V., Ascenzi D., Cappelletti D., Franceschini S., and Pirani F. (1995), Phys. Rev. Lett. 74, 2929.

    Article  CAS  Google Scholar 

  24. Aquilanti V., Ascenzi D., Cappelletti D., de Castro-Vitores M., and Pirani F. (1998), J. Chem. Phys. 109, 3898.

    CAS  Google Scholar 

  25. Aquilanti V., Ascenzi D., Bartolomei M., Cappelletti D., Cavalli S., de Castro-Vitores M., and Pirani F. (1999), Phys. Rev. Lett. 82, 69.

    Article  CAS  Google Scholar 

  26. Aquilanti V., Ascenzi D., Bartolomei M., Cappelletti D., Cavalli S., de Castro-Vitores M., and Pirani F. (1999), J. Am. Chem. Soc. 121, 10794.

    Article  CAS  Google Scholar 

  27. Pirani F., Bartolomei M., Cappelletti D., Aquilanti V., Scotoni M., Vescovi M., Ascenzi D., and Bassi D. (2001), Phys. Rev. Lett. 86, 5035.

    Article  CAS  Google Scholar 

  28. Kramer K. H., and Bernstein R. B. (1964), J. Chem. Phys. 42, 767.

    Google Scholar 

  29. Brooks P. R. (1976), Science 91, 5365.

    Google Scholar 

  30. Stolte S. (1982), Ber. Bunsen-Ges, Phys. Chem. 86, 413.

    CAS  Google Scholar 

  31. Parker D. H., and Bernstein R. B. (1989), Annu. Rev. Phys. Chem. 40, 561.

    Article  CAS  Google Scholar 

  32. Loesch H. J., and Remscheid A. (1990), J. Chem. Phys. 93, 4779.

    Article  CAS  Google Scholar 

  33. Friedrich B., and Herschbach D. R. (1991), Nature 353, 412; Rost J. M., Griffin J. C., Friedrich B., and Herschbach D. R. (1992), Phys. Chem. Lett. 68, 1299.

    Article  CAS  Google Scholar 

  34. Hasselbrink E., Waldeck J. R., and Zare R. N. (1988), Chem. Phys. 126, 191.

    Article  Google Scholar 

  35. Parker D. H., Jalink H., and Stolte S. (1987), J. Phys. Chem. 91, 5427; Ohoyama H., Kasai T., Ohashi K., and Kuwata K. (1992), Chem. Phys. 165, 155.

    CAS  Google Scholar 

  36. Kuipes E. W., Tennet M. G., and Kleyn A. W., and Stolte S. (1988), Nature 334, 420; Fecher G., Volker M., and Bernstein R. B. (1989), Chem. Phys. Lett. 161, 212.

    Google Scholar 

  37. Gandhi S. R., Curtiss T. J., and Bernstein R. B. (1987), Phys. Rev. Lett, 59, 2951; Gandhi S. R., and Bernstein R. B (1988)., J. Chem. Phys. 88, 1472.

    Article  CAS  Google Scholar 

  38. Kasai T., Matsunami T., Fukawa T., Ohoyama H., and Kuwata K. (1993), Phys. Rev. Lett. 7, 3864; Kasai T., Matsunami T., Takahashi H., Fukawa T., Ohoyama H., and Kuwata K. (1995), J. Phys. Chem. 99, 13597.

    Google Scholar 

  39. Gandhi S. R., Curtiss T. J., Xu Q.-X., Choi S. E., and Bernstein R. B. (1986), Chem. Phys. Lett. 132, 6.

    Article  CAS  Google Scholar 

  40. Kasai T., Fukawa T., Matsunami T., Che D.-C., Ohashi K., Ohoyama H., and Kuwata K. (1993), Rev. Sci. Instrum. 64, 1150.

    Article  CAS  Google Scholar 

  41. Che D. C., Hashinokuchi M., Shimizu Y., Ohoyama H., Kasai T. (2001), Phys. Chem. Chem. Phys. 3, 4979.

    Article  CAS  Google Scholar 

  42. Harris S. A., Brooks P. R. (2001), J. Chem. Phys. 114, 10569.

    Article  CAS  Google Scholar 

  43. Brooks P. R., Harris S. A. (2002), J. Chem. Phys. 117, 4220.

    Article  CAS  Google Scholar 

  44. Jia B., Laib J., Lobo R. F. M., Brooks P. R. (2002), J. Am. Chem. Soc. 124, 13896.

    CAS  Google Scholar 

  45. Woelke A. (2003), Doctoral Dissertation, Bielefeld, Germany; Woelke A., Loesch H. J. (2003), in preparation.

    Google Scholar 

  46. van Beeck M. C., ter Meulen J. J. (2001), J. Chem. Phys. 115, 1843.

    Google Scholar 

  47. Alexander M. H., Stolte S. (2000), J. Chem. Phys. 112, 8017.

    CAS  Google Scholar 

  48. Komrowski A. J., Ternow K., Razaznejad B., Berenbak B., Sexton J. Z., Zoric I., Kasemo B., Lundqvist B. I., Stolte S., Kleyn A. W., Kummel A. C. (2002), J. Chem. Phys. 117, 8185.

    Article  CAS  Google Scholar 

  49. Teraoka Y., Yoshigoe A. (2002), Jpn. J. Appl. Phys. 41, 4253.

    Article  CAS  Google Scholar 

  50. Vattuone L., Gerbi A., Rocca M., Valbusa U., Cappelletti D., Pirani F., Vecchiocattivi F., Baraldi A., Comelli G., Petaccia L., Rumiz L. (2003), in preparation.

    Google Scholar 

  51. Kasai H., Diño W. A., Muhida R. (2033), Progr. Surf. Sci. 72, 53.

    Google Scholar 

  52. Hou H., Gulding S. J., Rettner C. T., Wodke A. M., Auerback D. J. (1997), Science 277, 80.

    Article  CAS  Google Scholar 

  53. Loesch H. J. (1995), Annu. Rev. Phys. Chem. 46, 555.

    Article  CAS  Google Scholar 

  54. Aoiz F. J., Bañares L., Castillo J. F., Martìnez-Haya B., de Miranda M. P. (2001), J. Chem. Phys. 114, 8328.

    CAS  Google Scholar 

  55. Aquilanti V., Cavalli S., Grossi G., Anderson R. W. (1991), J. Phys. Chem. 95, 8184.

    CAS  Google Scholar 

  56. Anderson R. W., Aquilanti V., Cavalli S., Grossi G. (1993), J. Phys. Chem. 97, 2443.

    CAS  Google Scholar 

  57. Alvariño J. M., Aquilanti V., Cavalli S., Crocchianti S., Laganà A., Martìnez T. (1997), J. Chem. Phys. 107, 3339.

    Google Scholar 

  58. Alvariño J. M., Aquilanti V., Cavalli S., Crocchianti S., Laganà A., Martìnez T. (1998), J. Phys. Chem. 102, 9638.

    Google Scholar 

  59. de Miranda M. P., Gargano R. (1999), Chem. Phys. Lett. 309, 257.

    Google Scholar 

  60. Tang B.-Y., Yang B.-H., Zhang L., Han K.-L., Zhang J. Z. H. (2000) Chem. Phys. Lett. 327, 381.

    Article  CAS  Google Scholar 

  61. Tang B.-Y., Yang B.-H., Han K.-L., Zhang R.-Q., Zhang J. Z. H. (2000) J. Chem. Phys. 113, 10105.

    Article  CAS  Google Scholar 

  62. Tang B.-Y., Chen M.-D., Han K.-L., Zhang J. Z. H. (2001) J. Chem. Phys. 115, 731.

    CAS  Google Scholar 

  63. Tang B.-Y., Chen M.-D., Han K.-L., Zhang J. Z. H. (2001) J. Phys. Chem. 105, 8629.

    CAS  Google Scholar 

  64. Aldegunde J., De Fazio D., unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Aquilanti, V., Pirani, F., Cappelletti, D., Vecchiocattivi, F., Kasai, T. (2004). Molecular Reaction Stereodynamics: In Search of Paths to Overcome Steric Hindrances to Reactivity. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_11

Download citation

Publish with us

Policies and ethics