Skip to main content

Interactions Among the Vestibular, Autonomic, and Skeletal Systems in Artificial Gravity

  • Chapter
Artificial Gravity

Part of the book series: The Space Technology Library ((SPTL,volume 20))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpatov AM, Hoban-Higgins TM, Klimovitsky VY et al. (2000) Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight. J Gravit Physiol 7: S119-123

    Google Scholar 

  • Balaban CD (1996) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on the autonomic nervous system. Exp Brain Res 108: 367-381

    Article  Google Scholar 

  • Balaban CD (2004) Projections from the parabrachial nucleus to the vestibular nuclei: potential substrates for autonomic and limbic influences on vestibular responses. Brain Res 996: 126-137

    Article  Google Scholar 

  • Balaban CD, Porter JD (1998) Neuroanatomic substrates for vestibulo-autonomic interactions. J Vestib Res 8: 7-16

    Article  Google Scholar 

  • Barron KD, Chokroverty S (1993) Anatomy of the autonomic nervous system: brain and brainstem. In: Clinical Autonomic Disorders, Evaluation and Management. Low PA (ed) Little, Brown and Co, Boston, pp 3-15

    Google Scholar 

  • Bjurholm A, Kreicbergs A, Terenius Let al. (1988) Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst 25: 119-125

    Article  Google Scholar 

  • Blomqvist CG, Stone HL (1979) Cardiovascular adjustments to gravitational stress. In: Handbook of Physiology. The Cardiovascular system III. Berne RM, Sperelakis N (eds) American Physiological Society, Baltimore, MD, pp 1025-1063

    Google Scholar 

  • Bonnet N, Laroche N, Vico Let al. (2006) Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 318: 1118-1127

    Article  Google Scholar 

  • Bungo MW, Charles JB, Johnson PC (1985) Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med 56: 985-990

    Google Scholar 

  • Convertino VA, Doerr DF, Guell A et al. (1992) Effects of acute exercise on attenuated vagal baroreflex function during bed rest. Aviat Space Environ Med 63: 999-1003

    Google Scholar 

  • Cotter LA, Arendt HE, Cass SPet al. (2004) Effects of postural changes and vestibular lesions on genioglossal muscle activity in conscious cats. J Appl Physiol 96: 923-930

    Article  Google Scholar 

  • Cotter LA, Arendt HE, Jasko JGet al. (2001) Effects of postural changes and vestibular lesions on diaphragm and rectus abdominis activity in awake cats. J Appl Physiol 91: 137-144

    Google Scholar 

  • Denise P, Sabatier JP, Corvisier Jet al. (2006) Sympathetic beta antagonist prevents bone mineral density decrease induced by labyrinthectomy J Grav Physiol, in press

    Google Scholar 

  • Doba N, Reis DJ (1974) Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in cat. Circulation Res 34: 9-18

    Google Scholar 

  • Eckberg DL, Abboud FM, Mark AL (1976) Modulation of carotid baroreflex responsiveness in man: effects of posture and propranolol. J Appl Physiol 41: 383-387

    Google Scholar 

  • Etard O, Reber A, Quarck Get al. (2004) Vestibular control on blood pressure during parabolic flights in awake rats. NeuroReport 15: 2357-2360

    Article  Google Scholar 

  • Fu L, Patel MS, Bradley Aet al. (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122: 803-815

    Article  Google Scholar 

  • Fuller PM, Warden CH, Barry SJet al. (2000) Effects of 2-G exposure on temperature regulation, circadian rhythms, and adiposity in UCP2/3 transgenic mice. J Appl Physiol 89: 1491-1498

    Google Scholar 

  • Fuller PM, Jones TA, Jones SMet al. (2002) Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection? Proc Natl Acad Sci USA 99: 15723-15728

    Article  Google Scholar 

  • Fuller PM, Jones TA, Jones SMet al. (2004) Evidence for macular gravity receptor modulation of hypothalamic, limbic and autonomic nuclei. Neuroscience 129: 461-471

    Article  Google Scholar 

  • Fuller PM, Fuller CA (2006) Genetic evidence for a neurovestibular influence on the mammalian circadian pacemaker. Biol Rhythms 21:177-184

    Article  Google Scholar 

  • Gotoh TM, Fujiki N, Matsuda T et al. (2004) Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats. Am J Physiol Regul Integr Comp Physiol Behav 286: R25-R30

    Google Scholar 

  • Herault S, Tobal N, Normand H et al. (2002) Effect of human head flexion on the control of peripheral blood flow in microgravity and in 1 g. Eur J Appl Physiol 87: 296-303

    Article  Google Scholar 

  • Hoban-Higgins TM, Alpatov AM, Wassmer GTet al. (2003) Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas. J Insect Physiol 49: 671-675

    Article  Google Scholar 

  • Holmes MJ, Cotter LA, Arendt HE (2002) Effects of lesions of the caudal cerebellar vermis on cardiovascular regulation in awake cats. Brain Res 938: 62-72

    Article  Google Scholar 

  • Inglis JT, Macpherson JM (1995) Bilateral labyrinthectomy in the cat: effects on the postural response to translation. J Neurophysiol 73: 1181-1191

    Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78: 272-303

    Article  Google Scholar 

  • Kasri M, Picquet F, Falempin M (2004) Effects of unilateral and bilateral labyrinthectomy on rat postural muscle properties: the soleus. Exp Neurol 185: 143-153

    Article  Google Scholar 

  • Kaufmann H, Biaggioni I, Voustianiouk Aet al. (2002) Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans. Exp Brain Res 143: 463-469

    Article  Google Scholar 

  • Kerman IA, McAllen RM, Yates BJ (2000) Patterning of sympathetic nerve activity in response to vestibular stimulation. Brain Res Bull 53: 11-16, 2000

    Article  Google Scholar 

  • Levasseur R, Sabatier JP, Etard Oet al. (2004) Labyrinthectomy decreases bone mineral density in the femoral metaphysis in rats. J Vestib Res 14: 361-365

    Google Scholar 

  • Metts BA, Kaufman GD, Perachio AA (2006) Polysynaptic inputs to vestibular efferent neurons as revealed by viral transneuronal tracing. Exp Brain Res 172: 261-274

    Article  Google Scholar 

  • Mittelstaedt H, Glasauer S (1993) Illusions of verticality in weightlessness. Clin Investig 71: 732-739

    Article  Google Scholar 

  • Monahan KD, Sharpe MK, Drury Det al. (2002) Influence of vestibular activation on respiration in humans. Am J Physiol Regul Integr Comp Physiol 282: R689-694

    Google Scholar 

  • Monk TH, Kennedy KS, Rose LRet al. (2001) Decreased human circadian pacemaker influence after 100 days in space: a case study. Psychosom Med 63: 881-885

    Google Scholar 

  • Moore ST, Clement G, Dai Met al. (2003) Ocular and perceptual responses to linear acceleration in microgravity: alterations in otolith function on the COSMOS and Neurolab flights. J Vestib Res 13: 377-393

    Google Scholar 

  • Mori RL, Cotter LA, Arendt HEet al. (2005) Effects of bilateral vestibular nucleus lesions on cardiovascular regulation in conscious cats. J Appl Physiol 98: 526-533

    Article  Google Scholar 

  • Murakami DM, Fuller CA (2000) The effect of 2G on mouse circadian rhythms. J Grav Physiol 7: 79–85

    Google Scholar 

  • Normand H, Etard O, Denise P (1997) Otolithic and tonic neck receptors control of limb blood flow in humans. J Appl Physiol 82: 1734-1738

    Google Scholar 

  • Normand H, Marie S, Denise P (2006) Off Vertical Axis Rotation modulates respiratory timing in Humans. Fundam Clinical Pharmacol 20: 215

    Google Scholar 

  • Onai T, Takayama K, Miura M (1987) Projections to areas of the nucleus tractus solitarii related to circulatory and respiratory responses in cats. J Auton Nerv Syst 18: 163-175

    Article  Google Scholar 

  • Parker DE, Reschke MF, Arrott AP et al. (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness: implications for preflight training. Aviat Space Environ Med 56: 601-606

    Google Scholar 

  • Porter JD, Pellis SM, Meyer ME (1990) An open-field activity analysis of labyrinthectomized rats. Physiol Behav 48: 27-30

    Article  Google Scholar 

  • Previc FH (1993) Do the organs of the labyrinth differentially influence the sympathetic and parasympathetic systems? Neurosci Biobehav Rev 17: 397-404

    Article  Google Scholar 

  • Radtke A, Popov K, Bronstein AM (2000) Evidence for a vestibulo-cardiac reflex in man. Lancet 356: 736-737

    Article  Google Scholar 

  • Rea RF, Eckberg DL (1987) Carotid baroreceptor-muscle sympathetic relation in humans. Am J Physiol 253: R929-934

    Google Scholar 

  • Rossiter CD, Yates BJ (1996) Vestibular influences on hypoglossal nerve activity in the cat. Neurosci Lett 211: 25-28, 1996.

    Article  Google Scholar 

  • Samel A, Gander P (1995) Bright light as a chronobiological countermeasure for shiftwork in space Acta Astronautica 36: 669-683

    Article  Google Scholar 

  • Schlienger RG, Kraenzlin ME, Jick SSet al. (2004) Use of beta-blockers and risk of fractures. Jama 292: 1326-1332

    Article  Google Scholar 

  • Shortt TL, Ray CA (1997) Sympathetic and vascular responses to head-down neck flexion in humans. Am J Physiol 272: H1780-1784

    Google Scholar 

  • Smith A (1973) Effects of chronic acceleration in animals. In: COSPAR: Life Sciences and Space Research XI. Proceedings of the Open Meeting of the Working Group on Space Biology, pp 201-206

    Google Scholar 

  • Strollo F (2000) Adaptation of the human endocrine system to microgravity in the context of integrative physiology and ageing. Pflugers Arch 441: R85-90

    Google Scholar 

  • Takeda S, Elefteriou, F, Levasseur R et al. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305-317

    Article  Google Scholar 

  • Thurrell A, Jauregui-Renaud K, Gresty MA, Bronstein AM (2003) Vestibular influence on the cardiorespiratory responses to whole-body oscillation after standing. Exp Brain Res 150: 325-331

    Google Scholar 

  • Togari A (2002) Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech 58: 77-84

    Article  Google Scholar 

  • .Wallin B, Nerhed C (1982) Relationship between spontaneous variations of muscle sympathetic activity and succeeding changes of blood pressure in man. J Autonom Nerv Syst 6: 293-302

    Article  Google Scholar 

  • Wilson TD, Cotter LA, Draper JA et al. (2006) Vestibular inputs elicit patterned changes in limb blood flow in conscious cats. J Physiol 575: 671-684

    Article  Google Scholar 

  • Woodring SF, Rossiter CD, Yates BJ (1997) Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res 113: 165-168

    Article  Google Scholar 

  • Yates BJ (1992) Vestibular influences on the sympathetic nervous system. Brain Res Rev 17: 51-59

    Article  Google Scholar 

  • Yates BJ, Bronstein AM (2005) The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. J Vestib Res 15: 119-129

    Google Scholar 

  • Yates BJ, Goto T, Bolton PS (1993) Responses of neurons in the rostral ventrolateral medulla of the cat to natural vestibular stimulation. Brain Res 601: 255-264

    Article  Google Scholar 

  • Yates BJ, Jakus J, Miller AD (1993) Vestibular effects on respiratory outflow in the decerebrate cat. Brain Res 629: 209-217

    Article  Google Scholar 

  • Yates BJ, Jian BJ, Cotter LAet al. (2000) Responses of vestibular nucleus neurons to tilt following chronic bilateral removal of vestibular inputs. Exp Brain Res 130: 151-158

    Article  Google Scholar 

  • Yates BJ, Kerman IA (1998) Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Rev 28: 73-82

    Article  Google Scholar 

  • Yates BJ, Miller AD (1996) Vestibular Autonomic Regulation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Yates BJ, Miller AD (1998) Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res 8: 17-25

    Article  Google Scholar 

  • Yates BJ, Aoki M, Burchill P et al. (1999) Cardiovascular responses elicited by linear acceleration in humans. Exp Brain Res 125: 476-484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Denise, P., Normand, H., Wood, S. (2007). Interactions Among the Vestibular, Autonomic, and Skeletal Systems in Artificial Gravity. In: Clément, G., Bukley, A. (eds) Artificial Gravity. The Space Technology Library, vol 20. Springer, New York, NY. https://doi.org/10.1007/0-387-70714-X_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-70714-X_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70712-9

  • Online ISBN: 978-0-387-70714-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics