Skip to main content

Gramicidin Channels: Versatile Tools

  • Chapter
Biological Membrane Ion Channels

Abstract

Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel’s permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Manan, N., and J.F. Hinton. 1994. Conformational states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy. Biochemistry 33:6773–6783.

    Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2003. The structure of gramicidin A in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data. J. Am. Chem. Soc. 125:9868–9878.

    Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2004a. Energetics of ion conduction through the gramicidin channel. Proc. Natl. Acad. Sci. USA 101:117–122.

    ADS  Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2004b. On the importance of atomic fluctuations, protein flexibility and solvent in ion permeation. J. Gen. Physiol. 124:679–690.

    Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2006. Ion permeation through a narrow channel: Using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. Biophys. J. 90:3447–3468.

    ADS  Google Scholar 

  • Allen, T.W., T. Bastug, S. Kuyucak, and S.-H. Chung. 2003. Gramicidin A channel as a test ground for molecular dynamics force fields. Biophys. J. 84:2159.

    Google Scholar 

  • Alper, J.S., and R.I. Gelb. 1990. Standard errors and confidence intervals in nonlinear regression: Comparison of Monte Carlo and parametric statistics. J. Phys. Chem. 94:4747–4751.

    Google Scholar 

  • Amdur, I., and G.G. Hammes. 1966. Chemical Kinetics: Principles and Selected Topics. McGraw-Hill, New York.

    Google Scholar 

  • Andersen, O.S. 1983a. Ion movement through gramicidin A channels. Single channel measurements at very high potentials. Biophys. J. 41:119–133.

    ADS  Google Scholar 

  • Andersen, O.S. 1983b. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements. Biophys. J. 41:135–146.

    ADS  Google Scholar 

  • Andersen, O.S. 1983c. Ion movement through gramicidin A channels. Studies on the diffusion–controlled association step. Biophys. J. 41:147–165.

    ADS  Google Scholar 

  • Andersen, O.S. 1989. Kinetics of ion movement mediated by carriers and channels. Methods Enzymol. 171:62–112.

    Google Scholar 

  • Andersen, O.S. 1999. Graphic representation of the results of kinetic analyses. J. Gen. Physiol. 114:589–590.

    Google Scholar 

  • Andersen, O.S., H.-J. Apell, E. Bamberg, D.D. Busath, R.E. Koeppe II, F.J. Sigworth, G. Szabo, D.W. Urry, and A.Woolley. 1999. Gramicidin channel controversy— the structure in a lipid environment. Nat. Struct. Biol. 6:609.

    Google Scholar 

  • Andersen, O.S., and S.W. Feldberg. 1996. The heterogeneous collision velocity for hydrated ions in aqueous solutions is ~104 cm/s. J. Phys. Chem. 100:4622–4629.

    Google Scholar 

  • Andersen, O.S., D.V. Greathouse, L.L. Providence, M.D. Becker, and R.E. Koeppe II. 1998. Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin A channels. J. Am. Chem. Soc. 120:5142–5146.

    Google Scholar 

  • Andersen, O.S., and R.E. Koeppe II. 1992. Molecular determinants of channel function. Physiol. Rev. 72:S89–S158.

    Google Scholar 

  • Andersen, O.S., R.E. Koeppe II, and B. Roux. 2005. Gramicidin channels. IEEE Trans. Nanobioscience 4:10–20.

    Google Scholar 

  • Andersen, O.S., J.A. Lundbæk, and J. Girshman. 1995. Channel function and channel-lipid bilayer interactions. In: Dynamical Phenomena in Living Systems. E. Mosekilde and O.G. Mouritsen, editors. Springer, New York, pp. 131–151.

    Google Scholar 

  • Andersen, O.S., and J. Procopio. 1980. Ion movement through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion-water interactions. Acta Physiol. Scand.; Suppl. 481:27–35.

    Google Scholar 

  • Andersen, O.S., G. Saberwal, D.V. Greathouse, and R.E. Koeppe II. 1996. Gramicidin channels—a solvable membrane “protein” folding problem. Ind. J. Biochem. Biophys. 33:331–342.

    Google Scholar 

  • Anisimov, V.M., I.V. Vorobyov, G. Lamoureux, S. Noskov, B. Roux, and A.D. MacKerell Jr. 2004. CHARMM all-atom polarizable force field parameter development for nucleic acids. Biophys. J. 86:415a.

    Google Scholar 

  • Åqvist, J., and A. Warshel. 1989. Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A. Biophys. J. 56:171–182.

    Google Scholar 

  • Arseniev, A.S., A.L. Lomize, I.L. Barsukov, and V.F. Bystrov. 1986. Gramicidin A transmembrane ion-channel. Three-dimensional structure reconstruction based on NMR spectroscopy and energy refinement. Biol. Membr. 3:1077–1104.

    Google Scholar 

  • Bamberg, E., H.J. Apell, and H. Alpes. 1977. Structure of the gramicidin A channel: Discrimination between the πL,D and the β helix by electrical measurements with lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 74:2402–2406.

    ADS  Google Scholar 

  • Bamberg, E., H.J. Apell, H. Alpes, E. Gross, J.L. Morell, J.F. Harbaugh, K. Janko, and P. Läuger. 1978. Ion channels formed by chemical analogs of gramicidin A. Fed. Proc. 37:2633–2638.

    Google Scholar 

  • Bamberg, E., and P. Läuger. 1973. Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membr. Biol. 11:177–194.

    Google Scholar 

  • Bamberg, E., K. Noda, E. Gross, and P. Läuger. 1976. Single-channel parameters of gramicidin A, B, and C. Biochim. Biophys. Acta 419:223–228.

    Google Scholar 

  • Bass, R.B., P. Strop, M. Barclay, and D.C. Rees. 2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587.

    ADS  Google Scholar 

  • Becker, M.D., D.V. Greathouse, R.E. Koeppe II, and O.S. Andersen. 1991. Amino acid sequence modulation of gramicidin channel function. Effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry 30:8830–8839.

    Google Scholar 

  • Becker, M.D., R.E. Koeppe II, and O.S. Andersen. 1992. Amino acid substitutions and ion channel function: Model-dependent conclusions. Biophys. J. 62:25–27.

    Google Scholar 

  • Bingham, N.C., N.E. Smith, T.A. Cross, and D.D. Busath. 2003. Molecular dynamics simulations of Trp side-chain conformational flexibility in the gramicidin A channel. Biopolymers 71:593–600.

    Google Scholar 

  • Bockris, J.O’.M., and A.K.N. Reddy. 1970. Modern Electrochemistry, Vol. 1. Plenum, New York.

    Google Scholar 

  • Burkhart, B.M., N. Li, D.A. Langs, W.A. Pangborn, and W.L. Duax. 1998. The conducting form of gramicidin A is a right-handed double-stranded double helix. Proc. Natl. Acad. Sci. USA 95:12950–12955.

    ADS  Google Scholar 

  • Busath, D.D. 1993. The use of physical methods in determining gramicidin channel structure and function. Annu. Rev. Physiol. 55:473–501.

    Google Scholar 

  • Busath, D.D., O.S. Andersen, and R.E. Koeppe II. 1987. On the conductance heterogeneity in membrane channels formed by gramicidin A. A cooperative study. Biophys. J. 51:79–88.

    Google Scholar 

  • Busath, D.D., and G. Szabo. 1981. Gramicidin forms multi-state rectifying channels. Nature 294:371–373.

    ADS  Google Scholar 

  • Busath, D.D., C.D. Thulin, R.W. Hendershot, L.R. Phillips, P. Maughan, C.D. Cole, N.C. Bingham, S. Morrison, L.C. Baird, R.J. Hendershot, M. Cotten, and T.A. Cross. 1998. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys. J. 75:2830–2844.

    Google Scholar 

  • Bystrov, V.F., and A.S. Arseniev. 1988. Diversity of the gramicidin A spatial structure: Two-dimensional proton NMR study in solution. Tetrahedron 44:925–940.

    Google Scholar 

  • Caywood, D., J. Durrant, P. Morrison, and D.D. Busath. 2004. The Trp potential deduced from gramicidin A/gramicidin M channels. Biophys. J. 86:55a.

    Google Scholar 

  • Chang, G., R.H. Spencer, A.T. Lee, M.T. Barclay, and D.C. Rees. 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282:2220–2226.

    ADS  Google Scholar 

  • Cifu, A.S., R.E. Koeppe II, and O.S. Andersen. 1992. On the supramolecular structure of gramicidin channels. The elementary conducting unit is a dimer. Biophys. J. 61:189–203.

    Google Scholar 

  • Cole, C.D., A.S. Frost, N. Thompson, M. Cotten, T.A. Cross, and D.D. Busath. 2002. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents. Biophys. J. 83:1974–1986.

    ADS  Google Scholar 

  • Cornell, B.A., F. Separovic, A.J. Baldassi, and R. Smith. 1988. Conformation and orientation of gramicidin A in oriented phospholipid bilayers measured by solid state carbon-13 NMR. Biophys. J. 53:67–76.

    Google Scholar 

  • Cornell, B.A., F. Separovic, D.E. Thomas, A.R. Atkins, and R. Smith. 1989. Effect of acyl chain length on the structure and motion of gramicidin A in lipid bilayers. Biochim. Biophys. Acta 985:229–232.

    Google Scholar 

  • Cowan, S.W., and J.P. Rosenbusch. 1994. Folding pattern diversity of integral membrane proteins. Science 264:914–916.

    ADS  Google Scholar 

  • Cowan, S.W., T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R.A. Pauptit, J.N. Jansonius, and J.P. Rosenbusch. 1992. Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733.

    ADS  Google Scholar 

  • Cox, B.G., G.R. Hedwig, A.J. Parker, and D.W. Watts. 1974. Solvation of ions. XIX Thermodynamic properties for transfer of single ions between protic and dipolar aprotic solvents. Aust. J. Chem. 27:477–501.

    Google Scholar 

  • Cross, T.A. 1994. Structural biology of peptides and proteins in synthetic membrane environments by solid-state NMR spectroscopy. Annu. Rep. NMR Spetrosc. 29:123–167.

    Google Scholar 

  • Cross, T.A., A. Arseniev, B.A. Cornell, J.H. Davis, J.A. Killian, R.E. Koeppe II, L.K. Nicholson, F. Separovic, and B.A. Wallace. 1999. Gramicidin channel controversy-revisited. Nat. Struct. Biol. 6:610–611; discussion 611–612.

    Google Scholar 

  • Davis, J.H., and M. Auger. 1999. Static and magic angle spinning NMR of membrane peptides and proteins. Progr. Nucl. Mag. Res. Spectr. 35:1–84.

    Google Scholar 

  • Dill, K.A. 1990. Dominant forces in protein folding. Biochemistry 29:7133–7155.

    Google Scholar 

  • Dill, K.A., T.M. Truskett, V. Vlachy, and B. Hribar-Lee. 2005. Modeling water, the hydrophobic effect, and ion solvation. Annu. Rev. Biophys. Biomol. Struct. 34:173–199.

    Google Scholar 

  • Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    ADS  Google Scholar 

  • Dubos, R.J. 1939. Studies on a bactericidal agent extracted from a soil bacillus I. Preparation of the agent. Its activity in vitro. J. Exp. Med. 70:1–10.

    Google Scholar 

  • Durkin, J.T., R.E. Koeppe II, and O.S. Andersen. 1990. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. J. Mol. Biol. 211:221–234.

    Google Scholar 

  • Durkin, J.T., L.L. Providence, R.E. Koeppe II, and O.S. Andersen. 1992. Formation of non-β-helical gramicidin channels between sequence-substituted gramicidin analogues. Biophys. J. 62:145–159.

    Google Scholar 

  • Durkin, J.T., L.L. Providence, R.E. Koeppe II, and O.S. Andersen. 1993. Energetics of heterodimer formation among gramicidin analogues with an NH2-terminal addition or deletion. Consequences of a missing residue at the join in channel. J. Mol. Biol. 231:1102–1121.

    Google Scholar 

  • Edwards, S., B. Corry, S. Kuyucak, and S.-H. Chung. 2002. Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys. J. 83:1348.

    ADS  Google Scholar 

  • Eigen, M. 1974. Diffusion control in biochemical reactions. In: Quantum Statistical Mechanics in the Natural Sciences. S.L. Mintz and S.M. Widmayer, editors. Ed. Plenum Press, New York, pp. 37–61.

    Google Scholar 

  • Einstein, A. 1907. Theoretische Betrachtungen über der Brownsche Bewegungen. Zeit. f. Elektrochemie 13:41–42.

    Google Scholar 

  • Engelman, D.M., T.A. Steitz, and A. Goldman. 1986. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15:321–353.

    Google Scholar 

  • Evans, E.A., and R.M. Hochmuth. 1978. Mechanochemical properties of membranes. Curr. Top. Membr. Transp. 10:1–64.

    Google Scholar 

  • Ferry, J.D. 1936. Statistical evaluation of sieve constants in ultrafiltration. J. Gen Physiol. 20:95–104.

    Google Scholar 

  • Fersht, A. 1985. Enzyme Structure and Mechanism, 2nd Ed. W.H. Freeman and Co., New York.

    Google Scholar 

  • Finkelstein, A. 1974. Aqueous pores created in thin lipid membranes by the antibiotics nystatin, amphotericin B and gramicidin A. Implications for pores in plasma membranes. In: Drugs and Transport Processes. B.A. Callingham, editor. MacMillan, London, pp. 241–250.

    Google Scholar 

  • Finkelstein, A., and O.S. Andersen. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membr. Biol. 59:155–171.

    Google Scholar 

  • Finkelstein, A., and A. Cass. 1968. Permeability and electrical properties of thin lipid membranes. J. Gen. Physiol. 52:145s–172s.

    Google Scholar 

  • Fonseca, V., P. Daumas, L. Ranjalahy-Rasoloarijao, F. Heitz, R. Lazaro, Y. Trudelle, and O.S. Andersen. 1992. Gramicidin channels that have no tryptophan residues. Biochemistry 31:5340–5350.

    Google Scholar 

  • Galbraith, T.P., and B.A. Wallace. 1998. Phospholipid chain length alters the equilibrium between pore and channel forms of gramicidin. Faraday Discuss. 111:159–164; discussion 225–246.

    ADS  Google Scholar 

  • Gawrisch, K., D. Ruston, J. Zimmerberg, V.A. Parsegian, R.P. Rand, and N. Fuller. 1992. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys. J. 61:1213–1223.

    Google Scholar 

  • Gekko, K., and H. Noguchi. 1979. Compressibility of globular proteins in water at 25°C J. Phys. Chem. 83:2706–2714.

    Google Scholar 

  • Girshman, J., J.V. Greathouse, R.E. Koeppe, II, and O.S. Andersen. 1997. Gramicidin channels in phospholipid bilayers having unsaturated acyl chains. Biophys. J. 73:1310–1319.

    Google Scholar 

  • Greathouse, D.V., J.F. Hinton, K.S. Kim, and R.E. Koeppe II. 1994. Gramicidin A/short-chain phospholipid dispersions: Chain length dependence of gramicidin conformation and lipid organization. Biochemistry 33:4291–4299.

    Google Scholar 

  • Greathouse, D.V., R.E. Koeppe II, L.L. Providence, S. Shobana, and O.S. Andersen. 1999. Design and characterization of gramicidin channels. Methods Enzymol. 294:525–550.

    Google Scholar 

  • Gruner, S.M. 1985. Intrinsic curvature hypothesis for biomembrane lipid composition: A role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82:3665–3669.

    ADS  Google Scholar 

  • Hall, J.E. 1975. Access resistence of a small circular hole. J. Gen. Physiol. 66:531–532.

    Google Scholar 

  • Hanai, T., D.A. Haydon, and J. Taylor. 1965. The variation of capacitance and conductance of bimolecular lipid membranes with area. J. Theor. Biol. 9:433–443.

    Google Scholar 

  • Harold, F.M., and J.R. Baarda. 1967. Gramicidin, valinomycin, and cation permeability of Streptococcus faecalis. J. Bacteriol. 94:53–60.

    Google Scholar 

  • He, K., S.J. Ludtke, Y. Wu, H.W. Huang, O.S. Andersen, D. Greathouse, and R.E. Koeppe II. 1994. Closed state of gramicidin channel detected by X-ray in-plane scattering. Biophys. Chem. 49:83–89.

    Google Scholar 

  • Heckmann, K. 1965. Zur Theorie der “single file” diffusion. I. Z. Phys. Chem. N.F. 44:184–203.

    Google Scholar 

  • Heckmann, K. 1972. Single file diffusion. Biomembranes 3:127–153.

    Google Scholar 

  • Heitz, F., G. Spach, and Y. Trudelle. 1982. Single channels of 9,11,13,15- destryptophyl-phenylalanyl-gramicidin A. Biophys. J. 40:87–89.

    ADS  Google Scholar 

  • Herrell, W.E., and D. Heilman. 1941. Experimental and clinical studies on gramicidin. J. Clin. Invest. 20:583–591.

    Google Scholar 

  • Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199–219.

    Google Scholar 

  • Hille, B. 1975. Ionic selectivity of Na and K channels in nerve membranes. In: Membranes. Lipid Bilayers and Biological Membranes: Dynamic Properties. G. Eisenman, editor. Marcel Dekker, Inc., New York, pp. 255–323.

    Google Scholar 

  • Hille, B. 2001. Ionic Channels of Excitable Membranes, 3rd Ed. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hille, B., and W. Schwarz. 1978. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72:159–162.

    Google Scholar 

  • Hladky, S.B., and D.A. Haydon. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225:451–453.

    ADS  Google Scholar 

  • Hladky, S.B., and D.A. Haydon. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim. Biophys. Acta 274:294–312.

    Google Scholar 

  • Hodgkin, A.L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108:37–77.

    Google Scholar 

  • Hotchkiss, R.D. 1944. Gramicidin, tyrocidine, and tyrothricin. Adv. Enzymol. 4:153–199.

    Google Scholar 

  • Hu, W., and T.A. Cross. 1995. Tryptophan hydrogen bonding and electric dipole moments: Functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry 34:14147–14155.

    Google Scholar 

  • Huang, H.W. 1986. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50:1061–1070.

    ADS  Google Scholar 

  • Huang, W., and D.G. Levitt. 1977. Theoretical calculation of the dielectric constant of a bilayer membrane. Biophys. J. 17:111–128.

    ADS  Google Scholar 

  • Hünenberger, P.H., and J.A. McCammon. 1999. Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: A continuum electrostatics study. J. Chem. Phys. 110:1856.

    ADS  Google Scholar 

  • Jagannadham, M.V., and R. Nagaraj. 2005. Conformation of gramicidin a in water: Inference from analysis of hydrogen/deuterium exchange behavior by matrix assisted laser desorption ionization mass spectrometry. Biopolymers 80:708–713.

    Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003. X-ray structure of a voltage-dependent K+channel. Nature 423:33–41.

    ADS  Google Scholar 

  • Jing, N., K.U. Prasad, and D.W. Urry. 1995. The determination of binding constants of micellar-packaged gramicidin A by 13C-and 23Na-NMR. Biochim. Biophys. Acta 1238:1–11.

    Google Scholar 

  • Jing, N., and D.W. Urry. 1995. Ion pair binding of Ca2+ and Cl ions in micellarpackaged gramicidin A. Biochim. Biophys. Acta 1238:12–21.

    Google Scholar 

  • Jordan, P.C. 1981. Energy barriers for passage of ions through channels. Exact solution of two electrostatic problems. Biophys. Chem. 13:203–212.

    Google Scholar 

  • Jordan, P.C. 1984. The total electrostatic potential in a gramicidin channel. J. Membr. Biol. 78:91–102.

    Google Scholar 

  • Jordan, J.B., P.L. Easton, and J.F. Hinton. 2005. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles. Biophys. J. 8:224–234.

    Google Scholar 

  • Jude, A.R., D.V. Greathouse, R.E. Koeppe II, L.L. Providence, and O.S. Andersen. 1999. Modulation of gramicidin channel structure and function by the aliphatic “spacer” residues 10, 12, and 14 between the tryptophans. Biochemistry 38:1030–1039.

    Google Scholar 

  • Karplus, M., and J.A. McCammon. 1981. The internal dynamics of globular proteins. CRC Crit. Rev. Biochem. 9:293–349.

    Google Scholar 

  • Katsaras, J., R.S. Prosser, R.H. Stinson, and J.H. Davis. 1992. Constant helical pitch of the gramicidin channel in phospholipid bilayers. Biophys. J. 61:827–830.

    Google Scholar 

  • Kauzmann, W. 1957. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1–63.

    Google Scholar 

  • Kemp, G., and C. Wenner. 1976. Solution, interfacial, and membrane properties of gramicidin A. Arch. Biochem. Biophys. 176:547–555.

    Google Scholar 

  • Kessler, N., H. Schuhmann, S. Morneweg, U. Linne, and M.A. Marahiel. 2004. The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J. Biol. Chem. 279:7413–7419.

    Google Scholar 

  • Ketchem, R.R., B. Roux, and T.A. Cross. 1997. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5:1655–1669.

    Google Scholar 

  • Killian, J.A., S. Morein, P.C. van der Wel, M.R. de Planque, D.V. Greathouse, and R.E. Koeppe 2nd. 1999. Peptide influences on lipids. Novartis Found. Symp. 225:170–183; discussion 183–187.

    Google Scholar 

  • Killian, J.A., M.J. Taylor, and R.E. Koeppe II. 1992. Orientation of the valine-1 side chain of the gramicidin transmembrane channel and implications for channel functioning. A2 H NMR study. Biochemistry 31:11283–11290.

    Google Scholar 

  • Killian, J.A., and G. von Heijne. 2000. How proteins adapt to a membrane-water interface. TIBS 25:429–434.

    Google Scholar 

  • King, E.L., and C. Altman. 1956. A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem. 60:1375–1378.

    Google Scholar 

  • Koeppe, R.E., II, and O.S. Andersen. 1996. Engineering the gramicidin channel. Annu. Rev. Biophys. Biomol. Struct. 25:231–258.

    Google Scholar 

  • Koeppe, R.E., II, D.V. Greathouse, A. Jude, G. Saberwal, L.L. Providence, and O.S. Andersen. 1994a. Helix sense of gramicidin channels as a “nonlocal” function of the primary sequence. J. Biol. Chem. 269:12567–12576.

    Google Scholar 

  • Koeppe, R.E. II, J.A. Killian, and D.V. Greathouse. 1994b. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys. J. 66:14–24.

    Google Scholar 

  • Koeppe, R.E., II, J.-L. Mazet, and O.S. Andersen. 1990. Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. Biochemistry 29:512–520.

    Google Scholar 

  • Koeppe, R.E., II, J.A. Paczkowski, and W.L. Whaley. 1985. Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry 24:2822–2827.

    Google Scholar 

  • Koeppe, R.E., II, H. Sun, P.C. van der Wel, E.M. Scherer, P. Pulay, and D.V. Greathouse. 2003. Combined experimental/theoretical refinement of indole ring geometry using deuterium magnetic resonance and ab initio calculations. J. Am. Chem. Soc. 125:12268–12276.

    Google Scholar 

  • König, S., E. Sackmann, D. Richter, R. Zorn, C. Carlile, and T.M. Bayerl. 1994. Molecular dynamics of water in oriented DPPC multilayers studied by quasielastic neutron scattering and deuterium-nuclear magnetic resonance relaxation. J. Chem. Phys. 100:3307-3316.

    ADS  Google Scholar 

  • Kramers, H.A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304.

    MATH  MathSciNet  ADS  Google Scholar 

  • Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926.

    ADS  Google Scholar 

  • Lamoureux, G., A.D. MacKerell Jr., and B. Roux. 2003. A simple polarizable water model based on classical Drude oscillators. J. Chem. Phys. 119:5185–5197.

    ADS  Google Scholar 

  • Lamoureux, G., and B. Roux. 2003. Modeling induced polarizability with classical Drude oscillators: Theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119:3025–3039.

    ADS  Google Scholar 

  • Langs, D.A. 1988. Three-dimensional structure at 0.86 Å of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science 241:188–191.

    ADS  Google Scholar 

  • Läuger, P. 1976. Diffusion-limited ion flow through pores. Biochim. Biophys. Acta 455:493–509.

    Google Scholar 

  • Lee, K.C., S. Huo, and T.A. Cross. 1995. Lipid-peptide interface: Valine conformation and dynamics in the gramicidin channel. Biochemistry 34:857–867.

    Google Scholar 

  • Levitt, D.G. 1978. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophys. J. 22:209–219.

    ADS  Google Scholar 

  • Levitt, D.G., S.R. Elias, and J.M. Hautman. 1978. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim. Biophys. Acta 512:436–451.

    Google Scholar 

  • Lewis, B.A., and D.M. Engelman. 1983. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166:211–217.

    Google Scholar 

  • Lindahl, E., and O. Edholm. 2000. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79:426.

    ADS  Google Scholar 

  • Lipmann, F. 1980. Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv. Microb. Physiol. 21:227–266.

    Google Scholar 

  • Liu, N., and R.L. Kay. 1977. Redetermination of the pressure dependence of the lipid bilayer phase transition. Biochemistry 16:3484–3486.

    Google Scholar 

  • Long, S.B., E.B. Campbell, and R. Mackinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903.

    ADS  Google Scholar 

  • Lundbæk, J.A., P.H.A.J. Birn, R. Søgaard, C. Nielsen, J. Girshman, M.J. Bruno, S.E. Tape, J. Egebjerg, D.V. Greathouse, G.L. Mattice, R.E. Koeppe II, and O.S. Andersen. 2004. Regulation of sodium channel function by bilayer elasticity: The importance of hydrophobic coupling: Effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol. 123:599–621.

    Google Scholar 

  • Mackay, D.H.J., P.H. Berens, K.R. Wilson, and A.T. Hagler. 1984. Structure and dynamics of ion transport through gramicidin A. Biophys. J. 46:229–248.

    Google Scholar 

  • Mamanov, A.B., R.D. Coalson, A. Nitzan, and M.G.Kurnikova. 2003. The role of the dielectric barrier in narrow biological channels: A novel composite approach to modeling single-channel currents. Biophys. J. 84:3646–3661.

    Google Scholar 

  • Mattice, G.L., R.E. Koeppe II, L.L. Providence, and O.S. Andersen. 1995. Stabilizing effect of D-alanine+ in gramicidin channels. Biochemistry 34:6827–6837.

    Google Scholar 

  • Mazet, J.L., O.S. Andersen, and R.E. Koeppe II. 1984. Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophan, and tyrosine substitutions at positions 1 and 11. Biophys. J. 45:263–276.

    ADS  Google Scholar 

  • Mobashery, N., C. Nielsen, and O.S. Andersen. 1997. The conformational preference of gramicidin channels is a function of lipid bilayer thickness. FEBS Lett. 412:15–20.

    Google Scholar 

  • Morrow, J.S., W.R. Veatch, and L. Stryer. 1979. Transmembrane channel activity of gramicidin A analogs: Effects of modification and deletion of the aminoterminal residue. J. Mol. Biol. 132:733–738.

    Google Scholar 

  • Mouritsen, O.G., and M. Bloom. 1984. Mattress model of lipid-protein interactions in membranes. Biophys. J. 46:141–153.

    Google Scholar 

  • Mukherjee, S., and A. Chattopadhyay. 1994. Motionally restricted tryptophan environments at the peptide-lipid interface of gramicidin channels. Biochemistry 33:5089–5097.

    Google Scholar 

  • Myers, V.B., and D.A. Haydon. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. Ion selectivity. Biochim. Biophys. Acta 274:313–322.

    Google Scholar 

  • Neher, E., J. Sandblom, and G. Eisenman. 1978. Ionic selectivity, saturation, and block in gramicidin A channels. II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel. J. Membr. Biol. 40:97–116.

    Google Scholar 

  • Neumcke, B., and P. Läuger. 1969. Nonlinear electrical effects in lipid bilayer membranes II. Integration of the generalized Nernst-Planck equations. Biophys. J. 9:1160–1170.

    ADS  Google Scholar 

  • Nicholson, L.K., F. Moll, T.E. Mixon, P.V. LoGrasso, J.C. Lay, and T.A. Cross. 1987. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A’. Biochemistry 26:6621–6626.

    Google Scholar 

  • Nielsen, C., M. Goulian, and O.S. Andersen. 1998. Energetics of inclusion-induced bilayer deformations. Biophys. J. 74:1966–1983.

    ADS  Google Scholar 

  • Nielsen, C., and O.S. Andersen. 2000. Inclusion-induced bilayer deformations: Effects of monolayer equilibrium curvature. Biophys. J. 79:2583–2604.

    ADS  Google Scholar 

  • Nimigean, C.M., and C. Miller. 2002. Na+ block and permeation in a K+ channel of known structure. J. Gen. Physiol. 120:323.

    Google Scholar 

  • Noskov, S.Y., S. Bernèche, and B. Roux. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834.

    ADS  Google Scholar 

  • O’Connell, A.M., R.E. Koeppe II, and O.S. Andersen. 1990. Kinetics of gramicidin channel formation in lipid bilayers: Transmembrane monomer association. Science 250:1256–1259.

    ADS  Google Scholar 

  • Oiki, S., R.E. Koeppe II, and O.S. Andersen. 1994. Asymmetric gramicidin channels. Heterodimeric channels with a single F6 Val1 residue. Biophys. J. 66:1823–1832.

    ADS  Google Scholar 

  • Oiki, S., R.E. Koeppe II, and O.S. Andersen. 1995. Voltage-dependent gating of an asymmetric gramicidin channel. Proc. Natl. Acad. Sci. USA 92:212–2125.

    Google Scholar 

  • Olah, G.A., H.W. Huang, W.H. Liu, and Y.L. Wu. 1991. Location of ion-binding sites in the gramicidin channel by X-ray diffraction. J. Mol. Biol. 218:847–858.

    Google Scholar 

  • Owicki, J.C., M.W. Springgate, and H.M. McConnell. 1978. Theoretical study of protein–lipid and protein–protein interactions in bilayer membranes. Proc. Natl. Acad. Sci. USA 75:1616–1619.

    ADS  Google Scholar 

  • Park, J.B., H.J. Kim, P.D. Ryu, and E. Moczydlowski. 2003. Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: Re-examination of the surface charge hypothesis. J. Gen. Physiol. 121:375–398.

    Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature 221:844–846.

    ADS  Google Scholar 

  • Providence, L.L., O.S. Andersen, D.V. Greathouse, R.E. Koeppe II, and R. Bittman. 1995. Gramicidin channel function does not depend on phospholipid chirality. Biochemistry 34:16404–16411.

    Google Scholar 

  • Pulay, P., E.M. Scherer, P.C. van der Wel, and R.E. Koeppe II. 2005. Importance of tensor asymmetry for the analysis of 2HNMRspectra from deuterated aromatic rings. J. Am. Chem. Soc. 127:17488–17493.

    Google Scholar 

  • Ramachandran, G.N., and R. Chandrasekaran. 1972. Studies on dipeptide conformation and on peptides with sequences of alternating L and Dresidues with special reference to antibiotic and ion transport peptides. Progr. Pept. Res. 2:195–215.

    Google Scholar 

  • Rawat, S.S., D.A. Kelkar, and A. Chattopadhyay. 2004. Monitoring gramicidin conformations in membranes: A fluorescence approach. Biophys. J. 87:831–843.

    Google Scholar 

  • Rawicz, W., K.C. Olbrich, T. McIntosh, D. Needham, and E. Evans. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79:328–339.

    Google Scholar 

  • Robinson, R.A., and R.H. Stokes. 1959. Electrolyte Solutions, 2nd Ed. Butterworth, London.

    Google Scholar 

  • Rosenberg, P.A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels: Streaming potentials across lipid bilayer membranes. J. Gen. Physiol. 72:327–340.

    Google Scholar 

  • Roux, B. 2002. Computational studies of the gramicidin channel. Acc. Chem. Res. 35:366–375.

    MathSciNet  Google Scholar 

  • Roux, B., T.W. Allen, S. Bernèche, and W. Im. 2004. Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37:15–103.

    Google Scholar 

  • Roux, B., and M. Karplus. 1993. Ion transport in the gramicidin channel: Free energy of the solvated right-handed dimer in a model membrane. J. Am. Chem. Soc. 115:3250–3262.

    Google Scholar 

  • Roux, B., B. Prod’hom, and M. Karplus. 1995. Ion transport in the gramicidin channel: Molecular dynamics study of single and double occupancy. Biophys. J. 68:876–892.

    ADS  Google Scholar 

  • Russell, E.W.B., L.B. Weiss, F.I. Navetta, R.E. Koeppe II, and O.S. Andersen. 1986. Single-channel studies on linear gramicidins with altered amino acid side chains. Effects of altering the polarity of the side chain at position 1 in gramicidin A. Biophys. J. 49:673–686.

    Google Scholar 

  • Salom, D., M.C. Bańo, L. Braco, and C. Abad. 1995. HPLC demonstration that an all Trp→Phe replacement in gramicidin A results in a conformational rearrangement from beta-helical monomer to double-stranded dimer in model membranes. Biochem. Biophys. Res. Commun. 209:466–473.

    Google Scholar 

  • Salom, D., E. Perez-Paya, J. Pascal, and C. Abad. 1998. Environment- and sequencedependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes. Biochemistry 37:14279–14291.

    Google Scholar 

  • Sancho, M., and G. Martinez. 1991. Electrostatic modeling of dipole-ion interactions in gramicidin like channels. Biophys. J. 60:81–88.

    Google Scholar 

  • Sarges, R., and B. Witkop. 1965. Gramicidin A. V. The structure of valine- and isoleucine-gramicidin A. J. Am. Chem. Soc. 87:2011–2019.

    Google Scholar 

  • Scarlata, S.F. 1988. The effects of viscosity on gramicidin tryptophan rotational motion. Biophys. J. 54:1149–1157.

    ADS  Google Scholar 

  • Schagina, L.V., A.E. Grinfeldt, and A.A. Lev. 1978. Interaction of cation fluxes in gramicidin A channels in lipid bilayer membranes. Nature 273:243–245.

    ADS  Google Scholar 

  • Schatzberg, P. 1965. Diffusion of water through hydrocarbon liquids. J. Polym. Sci. C 10:87–92.

    Google Scholar 

  • Schiffer, M., C.-H. Chang, and F.J. Stevens. 1992. The functions of tryptophan residues in membrane proteins. Protein Engng. 5:213–214.

    Google Scholar 

  • Schracke, N., U. Linne, C. Mahlert, and M.A. Marahiel. 2005. Synthesis of linear gramicidin requires the cooperation of two independent reductases. Biochemistry 44:8507–8513.

    Google Scholar 

  • Segrest, J.P., and R.J. Feldmann. 1974. Membrane proteins: Amino acid sequence and membrane penetration. J. Mol. Biol. 87:853–858.

    Google Scholar 

  • Separovic, F., R. Pax, and B. Cornell. 1993. NMR order parameter analysis of a peptide plane aligned in a lyotropic liquid crysta. Mol. Phys. 78:357–369.

    ADS  Google Scholar 

  • Sham, S.S., S. Shobana, L.E. Townsley, J.B. Jordan, J.Q. Fernandez, O.S. Andersen, D.V. Greathouse, and J.F. Hinton. 2003. The structure, cation binding, transport, and conductance of Gly15-gramicidin A incorporated into SDS micelles and PC/PG vesicles. Biochemistry 42:1401–1409.

    Google Scholar 

  • Sharp, K.A., A. Nicholls, R.F. Fine, and B. Honig. 1991. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252:106–109.

    ADS  Google Scholar 

  • Sieber, S.A., and M.A. Marahiel. 2005. Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chem. Rev. 105:715–738.

    Google Scholar 

  • Simon, S.A., and T.J. McIntosh. 1986. Depth of water penetration into lipid bilayers. Methods Enzymol. 127:511–521.

    Google Scholar 

  • Smyth, C.P. 1955. Dielectric Behavior and Structure. Mcgraw-Hill, New York.

    Google Scholar 

  • Tanford, C. 1980. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd Ed. Wiley, New York.

    Google Scholar 

  • Tian, F., and T.A. Cross. 1999. Cation transport: An example of structural based selectivity. J. Mol. Biol. 285:1993–2003.

    Google Scholar 

  • Tosh, R.E., and P.J. Collings. 1986. High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers. Biochim. Biophys. Acta 859:10–14.

    Google Scholar 

  • Townsley, L.E., W.A. Tucker, S. Sham, and J.F. Hinton. 2001. Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40:11676–11686.

    Google Scholar 

  • Unwin, N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346:967–989.

    Google Scholar 

  • Urban, B.W., S.B. Hladky, and D.A. Haydon. 1978. The kinetics of ion movements in the gramicidin channel. Fed. Proc. 37:2628–2632.

    Google Scholar 

  • Urban, B.W., S.B. Hladky, and D.A. Haydon. 1980. Ion movements in gramicidin pores. An example of single-file transport. Biochim. Biophys. Acta 602:331–354.

    Google Scholar 

  • Urry, D.W. 1971. The gramicidinAtransmembrane channel:Aproposedπ(L,D) helix. Proc. Natl. Acad. Sci. USA 68:672–676.

    ADS  Google Scholar 

  • Urry, D.W. 1972. Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions. Biochim. Biophys. Acta 265:115–168.

    Google Scholar 

  • Urry, D.W. 1973. Polypeptide conformation and biological function: π-helices (πL, Dhelices) as permselective transmembrane channels. Jerusalem Symp. Quant. Chem. Biochem. 5:723–736.

    Google Scholar 

  • Urry, D.W., S. Alonso-Romanowski, C.M. Venkatachalam, R.J. Bradley, and R.D. Harris. 1984. Temperature dependence of single channel currents and the peptide libration mechanism for ion transport through the gramicidin A transmembrane channel. J. Membr. Biol. 81:205–217.

    Google Scholar 

  • Urry, D.W., T.L. Trapane, C.M. Venkatachalam, and R.B. McMichens. 1989. Ion interactions at membranous polypeptide sites using nuclear magnetic resonance: Determining rate and binding constants and site locations. Methods Enzymol. 171:286–342.

    Google Scholar 

  • Urry, D.W., T.L. Trapane, J.T. Walker, and K.U. Prasad. 1982. On the relative lipid membrane permeability of Na+ and Ca2+. A physical basis for the messenger role of Ca2+. J. Biol. Chem. 257:6659–6661.

    Google Scholar 

  • Veatch, W., and L. Stryer. 1977. The dimeric nature of the gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels. J. Mol. Biol. 113:89–102.

    Google Scholar 

  • Veatch, W.R., and E.R. Blout. 1974. The aggregation of gramicidin A in solution. Biochemistry 13:5257–5264.

    Google Scholar 

  • Veatch, W.R., E.T. Fossel, and E.R. Blout. 1974. The conformation of gramicidin A. Biochemistry 13:5249–5256.

    Google Scholar 

  • Wallace, B.A., W.R. Veatch, and E.R. Blout. 1981. Conformation of gramicidin A in phospholipid vesicles: Circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry 20:5754–5760.

    Google Scholar 

  • Weinstein, S., B.A. Wallace, E.R. Blout, J.S. Morrow, and W. Veatch. 1979. Conformation of gramicidin A channel in phospholipid vesicles: A carbon-13 and fluorine-19 nuclear magnetic resonance study. Proc. Natl. Acad. Sci. USA 76:4230–4234.

    ADS  Google Scholar 

  • Weinstein, S., B.A. Wallace, J.S. Morrow, and W.R. Veatch. 1980. Conformation of the gramicidin A transmembrane channel: A 13C nuclear magnetic resonance study of 13C-enriched gramicidin in phosphatidylcholine vesicles. J. Mol. Biol. 143:1–19.

    Google Scholar 

  • Weiss, L.B., and R.E. Koeppe II. 1985. Semisynthesis of linear gramicidins using diphenyl phosphorazidate (DPPA). Int. J. Pept. Protein Res. 26:305–310.

    Google Scholar 

  • Weiss, M.S., A. Kreusch, E. Schiltz, U. Nestel, W. Welte, J. Weckesser, and G.E. Schulz. 1991. The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett. 280:379–382.

    Google Scholar 

  • White, S.H., and W.C. Wimley. 1999. Membrane protein folding and stability: Physical principles. Annu. Rev. Biophys. Biomol. Struct. 28:319–365.

    Google Scholar 

  • Wiener, M.C., and S.H. White. 1992. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys. J. 61:437–447.

    Google Scholar 

  • Wolfenden, R., and M.J. Snider. 2001. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 12:938–945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Andersen, O.S., Koeppe II, R.E., Roux, B. (2007). Gramicidin Channels: Versatile Tools. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_2

Download citation

Publish with us

Policies and ethics