Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 596))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Honjo, H. Nagaoka, R. Shinkura and M. Muramatsu, AID to overcome the limitations of genomic information, Nat. Immunol. 6, 655–661 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai and T. Honjo, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell 102, 553–563 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. P. Revy, T. Muto, Y. Levy, F. Geissmann, A. Plebani, O. Sanal, N. Catalan, M. Forveille, R. Dufourcq-Labelouse, A. Gennery, I. Tezcan, F. Ersoy, H. Kayserili, A. G. Ugazio, N. Brousse, M. Muramatsu, L. D. Notarangelo, K. Kinoshita, T. Honjo, A. Fischer and A. Durandy, Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2), Cell 102, 565–575 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. J. Bachl, C. Carlson, V. Gray-Schopfer, M. Dessing and C. Olsson, Increased transcription levels induce higher mutation rates in a hypermutating cell line, J. Immunol. 166, 5051–5057 (2001).

    PubMed  CAS  Google Scholar 

  5. Y. Fukita, H. Jacobs and K. Rajewsky, Somatic hypermutation in the heavy chain locus correlates with transcription, Immunity 9, 105–114 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. H. Gu, Y. R. Zou and K. Rajewsky, Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting, Cell 73, 1155–1164 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. S. Jung, K. Rajewsky and A. Radbruch, Shutdown of class switch recombination by deletion of a switch region control element, Science 259, 984–987 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. A. Peters and U. Storb, Somatic hypermutation of immunoglobulin genes is linked to transcription initiation, Immunity 4, 57–65 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. K. Tumas-Brundage and T. Manser, The transcriptional promoter regulates hypermutation of the antibody heavy chain locus, J. Exp. Med. 185, 239–250. (1997).

    Article  PubMed  CAS  Google Scholar 

  10. L. Xu, B. Gorham, S. C. Li, A. Bottaro, F. W. Alt and P. Rothman, Replacement of germ-line epsilon promoter by gene targeting alters control of immunoglobulin heavy chain class switching, Proc. Natl. Acad. Sci. U S A 90, 3705–3709 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. A. Martin and M. D. Scharff, Somatic hypermutation of the AID transgene in B and non-B cells, Proc. Natl. Acad. Sci. U S A 99, 12304–12308 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. I. M. Okazaki, K. Kinoshita, M. Muramatsu, K. Yoshikawa and T. Honjo, The AID enzyme induces class switch recombination in fibroblasts, Nature 416, 340–345 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. K. Yoshikawa, I. M. Okazaki, T. Eto, K. Kinoshita, M. Muramatsu, H. Nagaoka and T. Honjo, AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts, Science 296, 2033–2036 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. I. M. Okazaki, H. Hiai, N. Kakazu, S. Yamada, M. Muramatsu, K. Kinoshita and T. Honjo, Constitutive expression of AID leads to tumorigenesis, J. Exp. Med. 197, 1173–1181 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. T. Muto, I. M. Okazaki, S. Yamada, Y. Tanaka, K. Kinoshita, M. Muramatsu, H. Nagaoka and T. Honjo, Negative regulation of activation-induced cytidine deaminase in B cells, Proc. Natl. Acad. Sci. U S A 103, 2752–2757 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. U. Basu, J. Chaudhuri, C. Alpert, S. Dutt, S. Ranganath, G. Li, J. P. Schrum, J. P. Manis and F. W. Alt, The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation, Nature 438, 508–511 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. H. Niwa, K. Yamamura and J. Miyazaki, Efficient selection for high-expression transfectants with a novel eukaryotic vector, Gene 108, 193–199 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. R. C. Rickert, K. Rajewsky and J. Roes, Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice, Nature 376, 352–355 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. D. T. Fearon, The CD19-CR2-TAPA-1 complex, CD45 and signaling by the antigen receptor of B lymphocytes, Curr. Opin. Immunol. 5, 341–348 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. T. F. Tedder, L. J. Zhou and P. Engel, The CD19/CD21 signal transduction complex of B lymphocytes, Immunol. Today 15, 437–442 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. M. Muramatsu, V. S. Sankaranand, S. Anant, M. Sugai, K. Kinoshita, N. O. Davidson and T. Honjo, Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells, J. Biol. Chem. 274, 18470–18476 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. C. J. Jolly, N. Klix and M. S. Neuberger, Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice, Nucleic Acids Res. 25, 1913–1919. (1997).

    Article  PubMed  CAS  Google Scholar 

  23. A. Gonzalez-Fernandez and C. Milstein, Analysis of somatic hypermutation in mouse Peyer’s patches using immunoglobulin kappa light-chain transgenes, Proc. Natl. Acad. Sci. U S A 90, 9862–9866 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. C. Rada, S. K. Gupta, E. Gherardi and C. Milstein, Mutation and selection during the secondary response to 2-phenyloxazolone, Proc. Natl. Acad. Sci. U S A 88, 5508–5512 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. H. M. Shen, A. Peters, B. Baron, X. Zhu and U. Storb, Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes, Science 280, 1750–1752. (1998).

    Article  PubMed  CAS  Google Scholar 

  26. A. Martin, P. D. Bardwell, C. J. Woo, M. Fan, M. J. Shulman and M. D. Scharff, Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas, Nature 415, 802–806 (2002).

    PubMed  CAS  Google Scholar 

  27. T. Eto, K. Kinoshita, K. Yoshikawa, M. Muramatsu and T. Honjo, RNA-editing cytidine deaminase Apobec-1 is unable to induce somatic hypermutation in mammalian cells, Proc. Natl. Acad. Sci. U S A 100, 12895–12898 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. A. Kotani, I. M. Okazaki, M. Muramatsu, K. Kinoshita, N. A. Begum, T. Nakajima, H. Saito and T. Honjo, A target selection of somatic hypermutations is regulated similarly between T and B cells upon activation-induced cytidine deaminase expression, Proc. Natl. Acad. Sci. U S A 102, 4506–4511 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. R. Shinkura, S. Ito, N. A. Begum, H. Nagaoka, M. Muramatsu, K. Kinoshita, Y. Sakakibara, H. Hijikata and T. Honjo, Separate domains of AID are required for somatic hypermutation and class-switch recombination, Nat. Immunol. 5, 707–712 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. V. M. Barreto, Q. Pan-Hammarstrom, Y. Zhao, L. Hammarstrom, Z. Misulovin and M. C. Nussenzweig, AID from bony fish catalyzes class switch recombination, J. Exp. Med. 202, 733–738 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. K. Wakae, B. G. Magor, H. Saunders, H. Nagaoka, A. Kawamura, K. Kinoshita, T. Honjo and M. Muramatsu, Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID, Int. Immunol. 18, 41–47 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. F. A. Peverali, A. Isaksson, A. G. Papavassiliou, P. Plastina, L. M. Staszewski, M. Mlodzik and D. Bohmann, Phosphorylation of Drosophila Jun by the MAP kinase rolled regulates photoreceptor differentiation, Embo J. 15, 3943–3950 (1996).

    PubMed  CAS  Google Scholar 

  33. B. Schulenberg, Goodman, T.N., Aggeler, R., Capaldi, R.A and Patton, W.F., Electorphoresis 25, 2526–2532 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Shinkura, R., Okazaki, Im., Muto, T., Begum, N.A., Honjo, T. (2007). Regulation of AID Function In Vivo . In: Gupta, S., Alt, F., Cooper, M., Melchers, F., Rajewsky, K. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation XI. Advances in Experimental Medicine and Biology, vol 596. Springer, Boston, MA. https://doi.org/10.1007/0-387-46530-8_7

Download citation

Publish with us

Policies and ethics