Skip to main content

Part of the book series: THE SPACE TECHNOLOGY LIBRARY ((SPTL,volume 18))

Abstract

The discipline of Cell Biology examines biological processes at the levl of the basic unit of biology, the cell. Cell Biology focus principally on events intrinsic to individual cells and on cellular responses to environmental factors. Cell Biology therefore provides the underpinning for other disciplines relevant to Space Biology, including Development Biology, Radiation Biology (see individual chapters of this report), as well as Space Physiology and Medicine. Each of these areas of research at the tissue and organism levels ultimately depends on the normal function of individual cells and their integration into physiological networks. This section reviews the effects of spaceflight on bacteria, unicellular organisms, and human cells. Although the majority of these experiments are primarily of fundamental interest, the effects of gravity and microgravity on various processes at a systemic and cellular level reveal basic phenomena also relevant in nonspaceflight related sciences, such as in the area of biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama H, Kanai S, Hirano M, Kumei Y, Shimokawa H, Katano H, Hara E, Song S, Mukai C, Nagaoka S (1996) An improved quantitative RT-PCR fluorescent method for analysis of gene transcripts in the STS-65 space shuttle experiment. J Biotechnol 47: 325–333

    Article  Google Scholar 

  • Block I, Briegleb W, Wohlfarth-Bottermann KE (1986) Gravisensitivity of the acellular slime mold Physarum polycephalum demonstrated on the fast- rotating clinostat. Eur J Cell Biol 41: 44–50

    Google Scholar 

  • Block I, Wolke A, Briegleb W (1994a) Gravitational response of the slime mold Physarum. Adv Space Res 14: 21–34

    Article  Google Scholar 

  • Block I, Wolke A, Briegleb W (1994b) Responses of the slime mold Physarum polycephalum to changing accelerations. J Gravit Physiol 1: 78–81

    Google Scholar 

  • Block I, Briegleb W, Wolke A (1996) Acceleration-sensitivity threshold of Physarum. J Biotechnol 47: 239–244

    Article  Google Scholar 

  • Block I, Rabien H, Ivanova K (1998) Involvement of the second messenger cAMP in gravity-signal transduction in Physarum. Adv Space Res 21: 1311–1314

    Article  Google Scholar 

  • Block I, Freiberger N, Gavrilova O, Hemmersbach R (1999) Putative graviperception mechanisms of protists. Adv Space Res 24: 877–882

    Article  Google Scholar 

  • Bouloc P, D'Ari R (1991) Escherichia coli metabolism in space. J Gen Microbiol 137: 2839–2843

    Google Scholar 

  • Chang D, Paulsen A, Johnson TC, Consigli RA (1993) Virus protein assembly in microgravity. Adv Space Res 13: 251–257

    Article  Google Scholar 

  • Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS (1992) Cytokine secretion by immune cells in space. J Leukoc Biol 52: 104–110

    Google Scholar 

  • Ciferri O, Tiboni O, Di Pasquale G, Orlandoni AM, Marchesi ML (1986) Effects of microgravity on genetic recombination in Escherichia coli. Nurwissenschaften 73: 418–421

    Article  Google Scholar 

  • Cogoli A, Tschopp A& Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225: 228–230

    Article  Google Scholar 

  • de Groot RP, Rijken PJ, den Hertog J, Boonstra J, Verkleij AJ, de Laat SW, Kruijer W (1990) Microgravity decreases c-fos induction and serum response element activity. J Cell Sci 97: 33–38

    Google Scholar 

  • de Groot RP, Rijken PJ, den Hertog J, Boonstra J, Verkleij AJ, de Laat SW, Kruijer W (1991) Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes. Exp Cell Res 197: 87–90

    Article  Google Scholar 

  • Freed LE, Vunjak-Novakovic G (2002) Spaceflight bioreactor studies of cells and tissues. In: Cell Biology and Biotechnology in Space, A Cogoli (ed) Advances in Space Biology and Medicine 8, Elsevier, Amsterdam, pp 177–195

    Google Scholar 

  • Friedrich ULD, Joop O, Pütz Ch, Willich G (1996) The slow rotating centrifuge microscope NIZEMI: A versatile instrument for terrestrial hypergravity and space microgravity research in biology and material science. J Biotechnol 47: 225–238

    Article  Google Scholar 

  • Friend C (1957) Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia. J Exper Med 105: 307–318

    Article  Google Scholar 

  • Gasset G, Tixador R, Eche B, Lapchine L, Moatti N, Toorop P, Woldringh C (1994) Growth and division of Escherichia coli under microgravity conditions. Res Microbiol 145: 111–120

    Article  Google Scholar 

  • Gebauer M, Watzke D, Machemer H (1999) The gravikinetic response of Paramecium is based on orientation-dependent mechanotransduction. Naturwiss 86: 352–356

    Article  Google Scholar 

  • Gordon A, Cohen M (eds) (1971) Gravity and the Organism. The University of Chicago Press, Chicago

    Google Scholar 

  • Häder D-P, Rosum A, Schäfer J, Hemmersbach R (1996) Graviperception in the flagellate Euglena gracilis during a shuttle spaceflight. J Biotechnol 47: 261–269

    Article  Google Scholar 

  • Hader D-P, Porst M, Tahedl H, Richter P, Lebert M (1997) Gravitactic orientation in the flagellate Euglena gracilis. Micrograv Sci Technol 10: 53–57

    Google Scholar 

  • Hader D-P, Hemmersbach R, Lebert M (2005) Gravity and the Behaviour of Unicellular Organisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Hammond TG, Lewis FC, Goodwin TJ, Linnehan RM, Wolf DA, Hire KP, Campbell WC, Benes E, O'Reilly KC, Globus RK, Kaysen JH (1999) Gene expression in space. Nature Medicine 5: 359

    Article  Google Scholar 

  • Hashemi BB, Penkala JE, Yens C, Huls H, Cubbage M, Sams CF (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13: 2071–2082

    Google Scholar 

  • Hatton JP, Gaubert F, Lewis ML, Darsel Y, Ohlmann P, Cazenave JP, Schmitt D (1999) The kinetics of translocation and cellular quantity of protein kinase C in human leukocytes are modified during spaceflight. FASEB J 13: S23–33

    Google Scholar 

  • Hemmersbach R, Häder D-P (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S15

    Google Scholar 

  • Hemmersbach R, Voormanns R, Briegleb W, Rieder N, Häder D-P (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47: 271–278

    Article  Google Scholar 

  • Hemmersbach R, Voormanns R, Bromeis B, Schmidt N, Rabien H, Ivanova K (1998) Comparative studies of the graviresponses of Paramecium and Loxodes. Adv Space Res 21: 1285–1289

    Article  Google Scholar 

  • Hemmersbach R, Bräucker R (2002) Gravity-related behaviour in ciliates and flagellates. In: Cell Biology and Biotechnology in Space, A Cogoli (ed) Advances in Space Biology and Medicine 8, Elsevier, Amsterdam, pp 59–75

    Google Scholar 

  • Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B (1997) Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203 Suppl: SI87–197

    Article  Google Scholar 

  • Hughes-Fulford M (2002) Physiological effects of microgravity on osteoblast morphology and cell biology. In: Cell Biology and Biotechnology in Space, A Cogoli (ed) Advances in Space Biology and Medicine 8, Elsevier, Amsterdam, pp 129–157

    Google Scholar 

  • Kacena MA, Leonard PE, Todd P, Luttges MW (1997) Low gravity and inertial effects on the growth of E. coli and B. subtilis in semi-solid media. Aviat Space Environ Med 68: 1104–1108

    Google Scholar 

  • Kimzey SL, Fischer CL, Johnson PC, Ritzmann SE, Mengel CE (1975) Hematology and immunology studies. In: Biomedical Results of Apollo, RS Johnston, LF

    Google Scholar 

  • Dietlein, CA Berry (eds) NASA, Washington DC, NASA SP-368, pp 197–226

    Google Scholar 

  • Kimzey SL (1977) Hematology and immunology studies. In: Biomedical Results from Skylab, RS Johnston, LF Dietlein (eds) NASA, Washington DC, NASA SP- 377, pp 249–282

    Chapter  Google Scholar 

  • Klaus D, Simske S, Todd P, Stodieck L (1997) Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143: 449–455

    Google Scholar 

  • Konstantinova IV, Antropova YN, Legen'kov VI, Zazhirey VD (1973) Study of reactivity of blood lymphoid cells in crew members of the Soyuz 6, 7 and 8 space ships before and after flight. Space Biol. Aerospace Med 7: 45–55

    Google Scholar 

  • Kumei Y, Shimokawa H, Katano H, Hara E, Akiyama H, Hirano M, Mukai C, Nagaoka S, Whitson PA, Sams CF (1996) Microgravity induces prostaglandin E2 and interleukin-6 production in normal rat osteoblasts: role in bone demineralization. J Biotechnol 41: 313–324

    Article  Google Scholar 

  • Kumei Y, Morita S, Nakamura H, Katano H, Ohya K, Shimokawa H, Sams CF, Whitson PA (2004) Osteoblast responsiveness to 1 alpha 25- dihydroxyvitamin D3 during spaceflight. Ann NY Acad Sci 1030: 112–121

    Google Scholar 

  • Johnston RS, Dietlein LF, Berry CA (eds) (1975) Biomedical Results of Apollo, NASA, Washington DC, NASA SP-368

    Google Scholar 

  • Lewis ML (2002) The cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity. In: Cell Biology and Biotechnology in Space, A Cogoli (ed) Advances in Space Biology and Medicine 8, Elsevier, Amsterdam, pp 77–128

    Google Scholar 

  • Limouse M, Manie S, Konstantinova I, Ferrua B, Schaffar L (1991) Inhibition of phorbol ester-induced cell activation in microgravity. Exp Cell Res 197: 82–86

    Article  Google Scholar 

  • Maccarrrone M, Battista N, Meloni MA, Bari M, Galleri G, Pippia P, Cogoli A, Finazzi-Agró A (2003) Creating conditions similar to those occurring during exposure of cells to microgravity induces apoptosis in human lymphocytes by 5-lipoxigenase-mediated mitochondrial uncoupling and cytochrome c release, J Leukoc Biol 73: 472–481

    Article  Google Scholar 

  • Machemer H, Machemer-Röhnisch S, Bräucker R, Takahashi K (1991) Gravikinesis in Paramecium: Theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168: 1–12

    Article  Google Scholar 

  • Mattoni RHT, Keller EC, Ebersold WT, Eiserling FA, Romig WR (1971) Induction of lysogenic Bacteria in the space environment. In: The Experiments of Biosatellite II, J Saunders (ed) NASA, Washington DC, NASA SP-204, pp 309–324

    Google Scholar 

  • Mennigmann HD, Lange M (1986) Growth and differentiation of Bacillus subtilis under microgravity. Naturwiss 73: 415–417

    Article  Google Scholar 

  • Montgomery PO'B, Cook JE, Reynolds RC, Paul JS, Hayflick I, Stock D, Schulz WW, Kimsey S, Thirolf RG, Rogers T, Campbell D (1978) The response of single human cells to zero gravity. In Vitro 14: 165–173

    Article  Google Scholar 

  • Moore D, Cogoli A (1996) Gravitational and space biology at the cellular level. In: Biological and Medical Research in Space, D Moore, P Bie, H Oser (eds) Springer Verlag, Heidelberg, pp 1–106

    Google Scholar 

  • Nace GW (1983) Gravity and positional homeostasis of the cell. Life Sciences and Space Research 3: 159–168

    Google Scholar 

  • Planel H, Richoilley G, Tixador R, Templier J, Bes J C, Gasset G (1981) Space flight effects on Paramecium tetraurelia flown aboard Salyut 6 in the Cytos 1 and Cytos M experiment. Adv Space Res 1: 95–101

    Article  Google Scholar 

  • Planel H, Tixador R, Nefedov Y, Gretchko G, Richoilley G (1982) Effect of space flight factors at the cellular level: Results of the CYTOS experiment. Aviat Space Environ Med 53: 370–374

    Google Scholar 

  • Planel H (2004) Space and Life. An Introduction to Space Biology and Medicine. CRC Press, Boca Raton

    Google Scholar 

  • Pollard EC (1971) Physical determinants of receptor mechanisms. In: Gravity and the Organism, A Gordon, M Cohen (eds) The University of Chicago Press, Chicago, pp 25–34

    Google Scholar 

  • Prigogine I, Stengers I (1984) Order Out of Chaos, Man's New Dialogue with Nature. Bantam Books, Toronto

    Google Scholar 

  • Saunders J (ed) (1971) The Experiments of Biosatellite II. NASA, Washington DC, NASA SP-204

    Google Scholar 

  • Streb C, Richter P, Ntefidou M, Lebert M, Häder D-P (2002) Sensory transduction of gravitaxis in Euglena gracilis. J Plant Physiol 159: 855–862

    Article  Google Scholar 

  • Sundaresan A, Risin D, Pellis NR (2002) Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell Dev Biol Anim 38: 118–122

    Article  Google Scholar 

  • Tabony J, Glade N, Papaseit C, Demongeot J (2002) Microtubule self-organization and its gravity dependence. In: Cell Biology and Biotechnology in Space, A Cogoli (ed) Advances in Space Biology and Medicine 8, Elsevier, Amsterdam, pp 19–58

    Google Scholar 

  • Talas M, Batkai L, Stoger I, Nagy K, Hiros L, Konstantinova I, Rykova M, Mozgovaya I, Guseva O, Kozharinov V (1984) Results of space experiment program “Interferon”. Acta Astronautica 11: 379–386

    Article  Google Scholar 

  • Thevenet D, D'Ari R, Bouloc P (1996) The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. J Biotechnol 47: 89–97

    Article  Google Scholar 

  • Walther I, Jeanneret R, Van der School B, de Rooij N, Gass V, Arquint C, Lorenzi G, Bechler B, Cogoli A (1994) Development of a miniature bioreactor for continuous culture in a space laboratory. J Biotechnol 38: 21–32

    Article  Google Scholar 

  • Walther I, Bechler B, Müller O, Hunzinger E, Cogoli A (1996) Cultivation of Saccharomyces cerevisiae in a bioreactor in microgravity. J Biotechnol 47: 113–127

    Article  Google Scholar 

  • Walther I, Cogoli A (2003) Basic research, biotechnology, tissue engineering, and instrument development. Chimia 57: 321–324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Cogoli, A. (2006). Cell Biology. In: Clément, G., Slenzka, K. (eds) Fundamentals of Space Biology. THE SPACE TECHNOLOGY LIBRARY, vol 18. Springer, New York, NY. https://doi.org/10.1007/0-387-37940-1_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-37940-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33113-3

  • Online ISBN: 978-0-387-37940-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics