Skip to main content

Functional Interactions of PARP-1 with p53

  • Chapter
Poly(ADP-Ribosyl)ation

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408:307–310.

    Article  PubMed  CAS  Google Scholar 

  2. Hainaut P, Hollstein M. p53 and human cancer: The first ten thousand mutations. Adv Cancer Res 2000; 77:81–137.

    Article  PubMed  CAS  Google Scholar 

  3. Reed M, Woelker B, Wang P et al. The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Natl Acad Sci USA 1995; 92:9455–9459.

    Article  PubMed  CAS  Google Scholar 

  4. el-Deiry WS, Kern SE, Pietenpol JA et al. Definition of a consensus sequence binding site for p53. Nat Genet 1992; 1:45–49.

    Article  PubMed  CAS  Google Scholar 

  5. Mendoza-Alvarez H, Alvarez-Gonzalez R. Regulation of p53 sequence-specific DNA binding by covalent poly(ADP-ribosyl)ation. J Biol Chem 2001; 276:36425–36430.

    Article  PubMed  CAS  Google Scholar 

  6. Alvarez-Gonzalez R, Spring H, Muller M et al. Selective loss of poly(ADP-ribose) and the 85 kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis of HeLa cells. J Biol Chem 1999; 274:32122–32126.

    Article  PubMed  CAS  Google Scholar 

  7. Kameshita I, Matsuda Z, Taniguchi T et al. Poly(ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate binding domain, the DNA binding domain, and the automodification domain. J Biol Chem 1986; 59:4770–4776.

    Google Scholar 

  8. Alvarez-Gonzalez R, Watkins TA, Gill PK et al. Regulatory mechanisms of poly(ADP-ribose) polymerase. Mol Cell Biochem 1999; 193:19–22.

    Article  PubMed  CAS  Google Scholar 

  9. Menissier-de Murcia J, Molinete M, Gradwohl G et al. Zinc-binding domain of poly(ADP-ribose) polymerase participates in the recognition of single stranded breaks on DNA. J Mol Biol 1989; 210:2229–2237.

    Google Scholar 

  10. Ikejima M, Noguchi S, Yamashita R et al. The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA strand breaks and nicks and the consequent enzyme activation. J Biol Chem 1991; 265:21907–21913.

    Google Scholar 

  11. Mendoza-Alvarez H, Alvarez-Gonzalez R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 1993; 268:22575–22580.

    PubMed  CAS  Google Scholar 

  12. Buki KG, Bauer PI, Hakam A et al. Identification of domains of poly(ADP-ribose) polymerase for protein binding and self association. J Biol Chem 1995; 270:3370–3377.

    Article  PubMed  CAS  Google Scholar 

  13. Rolli V, O’Farrell M, Menissier de Murcia J et al. Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry 1997; 36:12147–12154.

    Article  PubMed  CAS  Google Scholar 

  14. Mendoza-Alvarez H, Alvarez-Gonzalez R. The 40 kDa carboxy-terminal domain of poly(ADP-ribose) polymerase-1 can form catalytically competent homo-and hetero-dimers in the absence of DNA. J Mol Biol 2004; 336:105–114.

    Article  PubMed  CAS  Google Scholar 

  15. Menissier-de Murcia J, Ricoul M, Tartier L et al. Functional interaction between PARP-1 & PARP-2 in chromosome stability & embryonic development in mouse. EMBO J 2003; 22:2255–2263.

    Article  PubMed  CAS  Google Scholar 

  16. Lane DP. p53, guardian of the genome. Nature (London) 1992; 358:15–16.

    Article  PubMed  CAS  Google Scholar 

  17. Chatterjee S, Berger SJ, Berger NA. Poly (ADP-ribose) polymerase: A guardian of the genome that facilitates DNA repair by protecting against DNA recombination. Mol Cell Biochem 1999; 193:23–30.

    Article  PubMed  CAS  Google Scholar 

  18. Kumari SR, Mendoza-Alvarez H, Alvarez-Gonzalez R. Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage: Covalent poly(ADP-ribosyl)ation of p53 by exogenous PARP and noncovalent binding of p53 to the M(r) 85,000 proteolytic fragment. Cancer Res 1998; 58:5075–5078.

    PubMed  CAS  Google Scholar 

  19. de Murcia G, Menissier de Murcia J. Poly(ADP-ribose) polymerase, a molecular nick sensor. Trends Biochem Sci 1994; 19:172–176.

    Article  PubMed  Google Scholar 

  20. Yamane K, Katayama E, Tsuruo T. p53 contains a DNA break-binding motif similar to the functional part of BRCT-related region of Rb. Oncogene 2001; 20:2859–2867.

    Article  PubMed  CAS  Google Scholar 

  21. Le Cam E, Fack F, Menissier de Murcia J et al. Conformational analysis of a 139 bp DNA fragment containing a single stranded break and its interaction with human poly(ADP-ribose) polymerase. J Mol Biol 1994; 235:1062–1071.

    Article  PubMed  Google Scholar 

  22. Cherny DA, Striker G, Subramaniam V et al. Bending of DNA due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy. J. Mol Biol 1999; 294:1015–1026.

    Article  PubMed  CAS  Google Scholar 

  23. Ishizuka S, Martin K, Booth C et al. Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo. Nucleic Acids Res 2003; 31:1–8.

    Article  CAS  Google Scholar 

  24. Susse S, Scholz C-J, Burkle A et al. Poly(ADP-ribose) polymerase-1 (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Res 2004; 32:669–680.

    Article  PubMed  CAS  Google Scholar 

  25. Wesierska-Gadek J, Schmid G, Cerni C. ADP-ribosylation of wild-type p53 in vitro: Binding of p53 protein to specific p53 consensus sequence prevents its modification. Biochem Biophys Res Commun 1996; 224:96–102.

    Article  PubMed  CAS  Google Scholar 

  26. Vaziri H, West MD, Allsopp RC et al. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 1997; 16:6018–6033.

    Article  PubMed  CAS  Google Scholar 

  27. Simbulan-Rosenthal CM, Rosenthal DS, Luo R et al. Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer Res 1999; 59:2190–2194.

    PubMed  CAS  Google Scholar 

  28. Wieler S, Gagne J-P, Vaziri H et al. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 2003; 278:18914–18921.

    Article  PubMed  CAS  Google Scholar 

  29. Mendoza-Alvarez H, Alvarez-Gonzalez R. Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase. Biochemistry (USA) 1999; 38:3948–3953.

    Article  PubMed  CAS  Google Scholar 

  30. Alvarez-Gonzalez R, Jacobson MK. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry (USA) 1987; 26:3218–3224.

    Article  PubMed  CAS  Google Scholar 

  31. Mendoza-Alvarez H, Chavez-Bueno S, Alvarez-Gonzalez R. Chain length analysis of the auto-Poly(ADP-Ribosyl)ation reaction products generated by poly(ADP-ribose) polymerase (PARP) as a function of the substrate concentration. IUBMB Life 2000; 50:145–149.

    PubMed  CAS  Google Scholar 

  32. Rubbi CP, Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 2003; 22:975–986.

    Article  PubMed  CAS  Google Scholar 

  33. Alvarez-Gonzalez R, Althaus FR. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutation Res 1989; 218:67–74.

    Article  PubMed  CAS  Google Scholar 

  34. Malanga M, Pleschke JM, Kleczkowska HE et al. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 1998; 273:11839–11843.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Alvarez-Gonzalez, R., Zentgraf, H., Frey, M., Mendoza-Alvarez, H. (2006). Functional Interactions of PARP-1 with p53. In: Poly(ADP-Ribosyl)ation. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36005-0_6

Download citation

Publish with us

Policies and ethics