Skip to main content

Microbial and Dietary Factors in the Pathogenesis of Chronic, Immune-Mediated Intestinal Inflammation

  • Chapter
Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sartor RB. Animal models of intestinal inflammation. In: Sartor RB, Sandborn WJ, eds. Kirsner’s Inflammatory Bowel Diseases. 6th ed. Elsevier Publishers, 2004:120–137.

    Google Scholar 

  2. Wilson KH. Natural biota of the human gastrointestinal tract. In: Blaser MJ, Smith PD, Ravdin JI et al, eds. Infections of the Gastrointestinal Tract. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2002:45–56.

    Google Scholar 

  3. Sartor RB. Microbial influences in inflammatory bowel disease: Role in pathogenesis and clinical implications. In: Sartor RB, Sandborn WJ, eds. Kirsner’s Inflammatory Bowel Diseases. 6th ed. Elsevier Publishers, 2004:138–162.

    Google Scholar 

  4. Tannock GW. Molecular assessment of intestinal microflora. Am J Clin Nutr 2001; 73:410S–414S.

    PubMed  CAS  Google Scholar 

  5. Sartor RB. Microbial agents in the pathogenesis, differential diagnosis, and complications of inflammatory bowel diseases. In: Blaser MJ, Smith PD, Ravdin JI et al, eds. Infections of the GI Tract. 2nd ed. New York: Raven Press, 2002:383–413.

    Google Scholar 

  6. Sartor RB. Targeting enteric bacteria in treatment of inflammatory bowel diseases: Why, how and when. Current Opinion in Gastroenterology 2003; 19:358–365.

    PubMed  Google Scholar 

  7. Schultz M, Rath HC. The possible role of probiotic therapy in inflammatory bowel disease. In: Tannock GW, ed. Probiotics and Prebiotics: Where are We Going? Wymondham: Caister Academic Press, 2002:175–237.

    Google Scholar 

  8. Elson CO, Cong Y. Understanding immune-microbial homeostasis in intestine. Immunol Res 2002; 26:87–94.

    PubMed  CAS  Google Scholar 

  9. Elson CO. Genes, microbes, and T cells-New therapeutic targets in Crohn’s disease. N Engl J Med 2002; 346:614–616.

    PubMed  Google Scholar 

  10. Heller F, Duchmann R. Intestinal flora and mucosal immune responses. Int J Med Microbiol 2003; 293:77–86.

    PubMed  CAS  Google Scholar 

  11. Sellon RK, Tonkonogy S, Schultz M et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998; 66:5224–5231.

    PubMed  CAS  Google Scholar 

  12. Rath HC, Herfarth HH, Ikeda JS et al. Normal luminal bacteria, especially Bacteroids species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98:945–953.

    PubMed  CAS  Google Scholar 

  13. Dianda L, Hanby AM, Wright NA et al. T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am J Pathol 1997; 150:91–97.

    PubMed  CAS  Google Scholar 

  14. Schultz M, Tonkonogy SL, Sellon RK et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol 1999; 276:G1461–G1472

    PubMed  CAS  Google Scholar 

  15. Contractor NV, Bassiri H, Reya T et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol 1998; 160:385–394.

    PubMed  CAS  Google Scholar 

  16. Veltkamp C, Tonkonogy SL, de Jong YP et al. Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tg(epsilon26) mice. Gastroenterology 2001; 120:900–913.

    PubMed  CAS  Google Scholar 

  17. Taurog JD, Richardson JA, Croft JT et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180:2359–2364.

    PubMed  CAS  Google Scholar 

  18. Kuhn R, Lohler J, Rennick D et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75:263–274.

    PubMed  CAS  Google Scholar 

  19. Hoentjen F, Harmsen HJ, Braat H et al. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin-10 gene deficient mice. Gut 2003; 52:1721–1727.

    PubMed  CAS  Google Scholar 

  20. Rath HC, Schultz M, Freitag R et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun 2001; 69:2277–2285.

    PubMed  CAS  Google Scholar 

  21. Rath HC, Ikeda JS, Linde HJ et al. Varying cecal bacterial loads influences colitis and gastritis in HLA-B27 transgenic rats. Gastroenterology 1999; 116:310–319.

    PubMed  CAS  Google Scholar 

  22. Kullberg MC, Ward JM, Gorelick P et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12 and gamma interferon-dependent mechanism. Infect Immun 1998; 66:5157–5166.

    PubMed  CAS  Google Scholar 

  23. Dieleman LA, Arends A, Tonkonogy SL et al. Helicobacter hepaticus does not induce or potentiate colitis in interleukin-10-deficient mice. Infect Immun 2000; 68:5107–5113.

    PubMed  CAS  Google Scholar 

  24. Kullberg MC, Jankovic D, Gorelick PL et al. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med 2003; 196:505–515.

    Google Scholar 

  25. Iqbal N, Oliver JR, Wagner FH et al. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J Exp Med 2002; 195:71–84.

    PubMed  CAS  Google Scholar 

  26. Aranda R, Sydora BC, McAllister PL et al. Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. J Immunol 1997; 158:3464–3473.

    PubMed  CAS  Google Scholar 

  27. Onderdonk AB, Franklin ML, Cisneros RL. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect Immun 1981; 32:225–231.

    PubMed  CAS  Google Scholar 

  28. Yamada T, Deitch E, Specian RD et al. Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation 1993; 17:641–662.

    PubMed  CAS  Google Scholar 

  29. Wood JD, Peck OC, Tefend KS et al. Evidence that colitis is initiated by environmental stress and sustained by fecal factors in the cotton-top tamarin (Saguinus oedipus). Dig Dis Sci 2000; 45:385–393.

    PubMed  CAS  Google Scholar 

  30. Axelsson LG, Landstrom E, Bylund-Fellenius AC. Experimental colitis induced by dextran sulphate sodium in mice: Beneficial effects of sulphasalazine and olsalazine. Aliment Pharmacol Ther 1998; 12:925–934.

    PubMed  CAS  Google Scholar 

  31. Hudcovic T, Stepankova R, Cebra J et al. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol 2001; 46:565–572.

    CAS  Google Scholar 

  32. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus and Escherichia coli. Infect Immun 1999; 67:2969–2974.

    PubMed  CAS  Google Scholar 

  33. Waidmann M, Bechtold O, Frick JS et al. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 2003; 125:162–177.

    PubMed  Google Scholar 

  34. Kishi D, Takahashi I, Kai Y et al. Alteration of V beta usage and cytokine production of CD4+ TCR beta beta homodimer T cells by elimination of Bacteroides vulgatus prevents colitis in TCR alpha-chain-deficient mice. J Immunol 2000; 165:5891–5899.

    PubMed  CAS  Google Scholar 

  35. Higgins LM, Frankel G, Douce G et al. Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infect Immun 1999; 67:3031–3039.

    PubMed  CAS  Google Scholar 

  36. Higgins LM, Frankel G, Connerton I et al. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 1999; 285:588–591.

    PubMed  CAS  Google Scholar 

  37. Mann BA, Kim SC, Sartor RB. Selective induction of experimental colitis by monoassociation of HLA-B27 transgenic rats with various enteric Bacteroides species. Gastroenterology 2003; 124:A322, (abstract).

    Google Scholar 

  38. Maggio-Price L, Shows D, Waggie K et al. Helicobacter bilis infection accelerates and H. hepaticus infection delays the development of colitis in multiple drug resistance-deficient (mdr1a-/-) mice. Am J Pathol 2002; 160:739–751.

    PubMed  CAS  Google Scholar 

  39. Kim SC, Tonkonogy SL, Albright CA et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 2005; 128(4):891–906.

    PubMed  CAS  Google Scholar 

  40. Kim SC, Tonkongy SL, Bower M et al. Dual-association of gnotobiotic IL-10-/-mice with two nonpathogenic commensal bacterial species accelerates colitis. Gastroenterology 2004; 126:A291.

    Google Scholar 

  41. Tsang J, Brown RS, Andersen GL et al. Selective expansion of colitogenic commensal bacterial species in SPF IL-10-/-mice. Gastroenterology 2004; 126:A291.

    Google Scholar 

  42. Isaacs KL, Sartor RB. Antibiotics in IBD. Gastroenterol Clin North Am 2004; 33:335–345.

    PubMed  Google Scholar 

  43. Gionchetti P, Rizzello F, Venturi A et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology 2000; 119:305–309.

    PubMed  CAS  Google Scholar 

  44. Kruis W, Schutz E, Fric P et al. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 1997; 11:853–858.

    PubMed  CAS  Google Scholar 

  45. Harper PH, Lee EC, Kettlewell MG et al. Role of the faecal stream in the maintenance of Crohn’s colitis. Gut 1985; 26:279–284.

    PubMed  CAS  Google Scholar 

  46. D’Haens GR, Geboes K, Peeters M et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998; 114:262–267.

    PubMed  Google Scholar 

  47. Sandborn WJ. Pouchitis following ileal pouch-anal anastomosis: Definition, pathogenesis, and treatment. Gastroenterology 1994; 107:1856–1860.

    PubMed  CAS  Google Scholar 

  48. Dieleman LA, Heizer WD. Nutritional issues in inflammatory bowel disease. Gastroenterol Clin North Am 1998; 27:435–451.

    PubMed  CAS  Google Scholar 

  49. Ambrose NS, Johnson M, Burdon DW et al. Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn’s disease surgery. Br J Surg 1984; 71:623–625.

    PubMed  CAS  Google Scholar 

  50. Liu Y, Van Kruiningen HJ, West AB et al. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease. Gastroenterology 1995; 108:1396–1404.

    PubMed  CAS  Google Scholar 

  51. Sutton CL, Kim J, Yamane A et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology 2000; 119:23–31.

    PubMed  CAS  Google Scholar 

  52. Wei B, Huang T, Dalwadi HN et al. Pseudomonas fluorescens encodes the Crohn’s disease-associated I2 sequence and T-cell superantigen. Infect Immun 2002; 70:6567–6575.

    PubMed  CAS  Google Scholar 

  53. Meddings JB. Review article: Intestinal permeability in Crohn’s disease. Aliment Pharmacol Ther 1997; 11(Suppl):47–53.

    PubMed  Google Scholar 

  54. Thjodleifsson B, Sigthorsson G, Cariglia N et al. Subclinical intestinal inflammation: An inherited abnormality in Crohn’s disease relatives? Gastroenterology 2003; 124:1728–1737.

    PubMed  Google Scholar 

  55. Swidsinski A, Ladhoff A, Pernthaler A et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 2002; 122:44–54.

    PubMed  Google Scholar 

  56. Kleessen B, Kroesen AJ, Buhr HJ et al. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 2002; 37:1034–1041.

    PubMed  CAS  Google Scholar 

  57. Wehkamp J, Harder J, Weichenthal M et al. Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 2003; 9:215–223.

    PubMed  Google Scholar 

  58. Lala S, Ogura Y, Osborne C et al. Crohn’s disease and the NOD2 gene: A role for paneth cells. Gastroenterology 2003; 125:47–57.

    PubMed  CAS  Google Scholar 

  59. Darfeuille-Michaud A, Neut C, Barnich N et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 1998; 115:1405–1413.

    PubMed  CAS  Google Scholar 

  60. Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001; 69:5529–5537.

    PubMed  CAS  Google Scholar 

  61. Rayment N, Mylonaki M, Rampton D et al. Colocalisation of E. coli with macrophages in lamina propria in patients with active inflammatory bowel disease (IBD). Gut 2003; in press, (abst).

    Google Scholar 

  62. Hisamatsu T, Suzuki M, Reinecker HC et al. CARD15/NOD2 functions as an anti-bacterial factor in human intestinal epithelial cells. Gastroenterology 2003; 124:993–1000.

    PubMed  CAS  Google Scholar 

  63. Korzenik JR, Dieckgraefe BK. Is Crohn’s disease an immunodeficiency? A hypothesis suggesting possible early events in the pathogenesis of Crohn’s disease. Dig Dis Sci 2000; 45:1121–1129.

    PubMed  CAS  Google Scholar 

  64. Dieckgraefe BK, Korzenik JR. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet 2002; 360:1478–1480.

    PubMed  Google Scholar 

  65. Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res 2002; 8:459–463.

    PubMed  CAS  Google Scholar 

  66. Tapping RI, Tobias PS. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J Endotoxin Res 2003; 9:264–268.

    PubMed  CAS  Google Scholar 

  67. Haller D, Jobin C. Interaction between resident luminal bacteria and the host: Can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr 2004; 38:123–136.

    PubMed  Google Scholar 

  68. Sartor RB, Hoentjen F. Proinflammatory cytokines and signaling pathways in intestinal innate immune cells. In: Mestecky MS, ed. Mucosal Immunol. 3rd ed. 2004: in press

    Google Scholar 

  69. Uhlig HH, Powrie F. Dendritic cells and the intestinal bacterial flora: A role for localized mucosal immune responses. J Clin Invest 2003; 112:648–651.

    PubMed  CAS  Google Scholar 

  70. Stagg AJ, Hart AL, Knight SC et al. The dendritic cell: Its role in intestinal inflammation and relationship with gut bacteria. Gut 2003; 52:1522–1529.

    PubMed  CAS  Google Scholar 

  71. Werling D, Jungi TW. TOLL-like receptors linking innate and adaptive immune response. Vet Immunol Immunopathol 2003; 91:1–12.

    PubMed  CAS  Google Scholar 

  72. Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003; 85:85–95.

    PubMed  CAS  Google Scholar 

  73. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278:8869–8872.

    PubMed  CAS  Google Scholar 

  74. Bonen DK, Ogura Y, Nicolae DL et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 2003; 124:140–146.

    PubMed  CAS  Google Scholar 

  75. Girardin SE, Boneca IG, Carneiro LA et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 2003; 300:1584–1587.

    PubMed  CAS  Google Scholar 

  76. Harton JA, Linhoff MW, Zhang J et al. Cutting edge: CATERPILLER: A large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol 2002; 169:4088–4093.

    PubMed  CAS  Google Scholar 

  77. Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 2000; 6:21–33.

    PubMed  CAS  Google Scholar 

  78. Haller D, Russo MP, Sartor RB, Jobin C. IKKbeta and phosphatidylinositol 3-kinase/Akt participate in nonpathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. J Biol Chem 2002; 277:38168–38178.

    PubMed  CAS  Google Scholar 

  79. Haller D, Holt L, Schwabe RF et al. Transforming growth factor-ta1 inhibits nonpathogenic Gramnegative bacteria-induced NF-{kappa}B recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J Biol Chem 2003; 278:23851–23860.

    PubMed  CAS  Google Scholar 

  80. Becker C, Wirtz S, Blessing M et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 2003; 112:693–706.

    PubMed  CAS  Google Scholar 

  81. Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol 2001; 2:361–367.

    CAS  Google Scholar 

  82. Oshitani N, Hato F, Kitagawa S et al. Analysis of intestinal HLA-DR bound peptides and dysregulated immune responses to enteric flora in the pathogenesis of inflammatory bowel disease. Int J Mol Med 2003; 11:99–104.

    PubMed  CAS  Google Scholar 

  83. Jobin C, Sartor RB. The I kappa B/NF-kappa B system: A key determinant of mucosal inflammation and protection. Am J Physiol Cell Physiol 2000; 278:C451–C462.

    PubMed  CAS  Google Scholar 

  84. Sartor RB, De La Cadena RA, Green KD et al. Selective kallikrein-kinin system activation in inbred rats differentially susceptible to granulomatous enterocolitis. Gastroenterology 1996; 110:1467–1481.

    PubMed  CAS  Google Scholar 

  85. Sogawa M, Matsumoto T, Yamagami H et al. A murine model of granulomatous colitis with mesenteric lymphadenitis induced by mycobacterial cord factor. Virchows Arch 2003; 442:151–158.

    PubMed  Google Scholar 

  86. Robert A, Asano T. Resistance of germfree rats to indomethacin-induced intestinal lesions. Prostaglandins 1977; 14:333–341.

    PubMed  CAS  Google Scholar 

  87. Videla S, Vilaseca J, Guarner F et al. Role of intestinal microflora in chronic inflammation and ulceration of the rat colon. Gut 1994; 35:1090–1097.

    PubMed  CAS  Google Scholar 

  88. Rachmilewitz D, Karmeli F, Takabayashi K et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 2002; 122:1428–1441.

    PubMed  CAS  Google Scholar 

  89. Rachmilewitz D, Katakara K, Karmeli F et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004; 126:520–528

    PubMed  CAS  Google Scholar 

  90. Jijon H, Backer J, Diaz H et al. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 2004; 126:1358–1373.

    PubMed  CAS  Google Scholar 

  91. Cender CJ, Haller D, Walters C et al. VSL #3 alters cytokine production of unfractionated splenocytes upon stimulation with cecal bacterial lysate: Immunomodulation by this probiotic combination. Gastroenterology 2002; 122:A145, (abst).

    Google Scholar 

  92. Ulisse S, Gionchetti P, D’Alo S et al. Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: Effects of probiotic treatment. Am J Gastroenterol 2001; 96:2691–2699.

    PubMed  CAS  Google Scholar 

  93. Kim SC, Tonkonogy SL, Sartor RB. Role of endogenous IL-10 in downregulating proinflammatory cytokine expression. Gastroenterology 2001; 120:A183, (abst).

    Google Scholar 

  94. Albright C, Tonkonogy SL, Sartor RB. Endogenous IL-10 inhibits APC stimulation of T lymphocyte responses to luminal bacteria. Gastroenterology 2002; 122:A270, (abst).

    Google Scholar 

  95. Albright C, Tonkonogy SL, Frelinger JA et al. Adoptive transfer of E. faecalis-pulsed dendritic cells accelerates colitis in IL-10 deficient mice. Gastroenterology 2003; 124:A73, (abst).

    Google Scholar 

  96. Dubuquoy L, Jansson EA, Deeb S et al. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 2003; 124:1265–1276.

    PubMed  CAS  Google Scholar 

  97. Kojima K, Musch MW, Ren H et al. Enteric flora and lymphocyte-derived cytokines determine expression of heat shock proteins in mouse colonic epithelial cells. Gastroenterology 2003; 124:1395–1407.

    PubMed  CAS  Google Scholar 

  98. Tomczak MF, Erdman SE, Poutahidis T et al. NF-kappa B is required within the innate immune system to inhibit microflora-induced colitis and expression of IL-12 p40. J Immunol 2003; 171:1484–1492.

    PubMed  CAS  Google Scholar 

  99. Russo MP, Boudreau F, Li F et al. NFkappaB blockade exacerbates experimental colitis in transgenic mice expressing an intestinal epithelial cells (IEC) specific IkappaB super-repressor. Gastroenterology 2001; 120:A70, (abst).

    Google Scholar 

  100. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 1998; 161:5733–5744.

    PubMed  CAS  Google Scholar 

  101. Duchmann R, Schmitt E, Knolle P et al. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 1996; 26:934–938.

    PubMed  CAS  Google Scholar 

  102. Cong Y, Brandwein SL, McCabe RP et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: Increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998; 187:855–864.

    PubMed  CAS  Google Scholar 

  103. Cohavy O, Harth G, Horwitz M et al. Identification of a novel mycobacterial histone H1 homologue (HupB) as an antigenic target of pANCA monoclonal antibody and serum immunoglobulin A from patients with Crohn’s disease. Infect Immun 1999; 67:6510–6517.

    PubMed  CAS  Google Scholar 

  104. Qian B-F, Hoentjen F, Dieleman LA et al. Dysregulated luminal bacterial antigen-specific T cell responses and antigen presenting cell function in HLA-B27 transgenic rats with chronic colitis. Gastroenterology 2003; 124:A487, (abst).

    Google Scholar 

  105. Kullberg MC, Andersen JF, Gorelick PL et al. Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc Natl Acad Sci USA 2003; 100:15830–15835.

    PubMed  CAS  Google Scholar 

  106. Brimnes J, Reimann J, Nissen M et al. Enteric bacterial antigens activate CD4(+) T cells from scid mice with inflammatory bowel disease. Eur J Immunol 2001; 31:23–31.

    PubMed  CAS  Google Scholar 

  107. Cong Y, Weaver CT, Lazenby A et al. Colitis induced by enteric bacterial antigen-specific CD4+ T cells requires CD40-CD40 ligand interactions for a sustained increase in mucosal IL-12. J Immunol 2000; 165:2173–2182.

    PubMed  CAS  Google Scholar 

  108. Yoshida M, Shirai Y, Watanabe T et al. Differential localization of colitogenic TH1 and TH2 cells monospecific to a micro flora-associated antigen in mice. Gastroenterology 2002; 123:1949–1961.

    PubMed  CAS  Google Scholar 

  109. Brown J, Haddad W, Balish E et al. Defining the TCR repertoire in interleukin-10 deficient mouse colitis induced by monoassociation with E. faecalis. Gastroenterology 2002; 122:A262, (abst).

    Google Scholar 

  110. Takahashi I, Matsuda J, Gapin L et al. Colitis-related public T cells are selected in the colonic lamina propria of IL-10-deficient mice. Clin Immunol 2002; 102:237–248.

    PubMed  CAS  Google Scholar 

  111. Sydora BC, Tavernini MM, Jewell LD et al. Effect of bacterial monoassociation on tolerance and intestinal inflammation in IL-10 gene-deficient mice. Gastroenterology 2001; 120:A517, (abst).

    Google Scholar 

  112. Cong Y, Weaver CT, Lazenby A et al. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J Immunol 2002; 169:6112–6119.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Balfour Sartor, R. (2006). Microbial and Dietary Factors in the Pathogenesis of Chronic, Immune-Mediated Intestinal Inflammation. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_4

Download citation

Publish with us

Policies and ethics