Skip to main content

Leflunomide in Solid Organ Transplantation and Polyoma Virus Infection

  • Chapter
Polyomaviruses and Human Diseases

Abstract

Leflunomide, trade name Arava® (Aventis Pharmaceuticals Incorporation, Bridgewater, New Jersey, U.S.A.), belongs to a family of drugs called the malonitrilamides. Some, like leflunomide, have substantial immune suppressive activity in experimental allograft models. In addition to experimental data suggesting leflunomide’s value in preventing15 and reversing acute1,5 and chronic rejection,6,7 it has been shown to inhibit human cytomegalovirus (CMV) and herpes simplex virus (HSV) in vitro.810 Because it is a drug with a variety of biologic activities, it has been investigated for diseases as disparate as cancer and autoimmunity. Leflunomide was approved for the treatment of rheumatoid arthritis and has been used in more than 300,000 patients worldwide with efficacy and a favorable side effect profile. In this chapter, we will discuss the immunemodulatory effects of leflunomide and its metabolite A77 1726 that prevent organ rejection. We will also share our experience in the treatment of polyomavirus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chong AS, Huang W, Liu W et al. In vivo activity of leflunomide: Pharmacokinetic analyses and mechanism of immunosuppression. Transplantation 1999; 68:100–109.

    Article  PubMed  CAS  Google Scholar 

  2. Kuchle CC, Thoenes GH, Langer KH et al. Prevention of kidney and skin graft rejection in rats by leflunomide, a new immunomodulating agent. Transplant Proc 1991; 23:1083–1086.

    PubMed  CAS  Google Scholar 

  3. Lin Y, Waer M. In vivo mechanism of action of leflunomide: Selective inhibition of the capacity of B lymphocytes to make T-independent xenoantibodies. Transplant Proc 1996; 28:3085.

    PubMed  CAS  Google Scholar 

  4. Lin Y, Goebels J, Xia G et al. Induction of specific transplantation tolerance across xenogeneic barriers in the T-independent immune compartment. Nat Med 1998; 4:173–180.

    Article  PubMed  CAS  Google Scholar 

  5. Williams JW, Xiao F, Foster P et al. Leflunomide in experimental transplantation. Control of rejection and alloantibody production, Reversal of acute rejection, and interaction with cyclosporine. Transplantation 1994; 57:1223–1231.

    Article  PubMed  CAS  Google Scholar 

  6. Xiao F, Chong A, Shen J et al. Pharmacologically induced regression of chronic transplant rejection. Transplantation 1995; 60:1065–1072.

    Article  PubMed  CAS  Google Scholar 

  7. Xiao F, Shen J, Chong A et al. Control and reversal of chronic xenograft rejection in hamster-to-rat cardiac transplantation. Transplant Proc 1996; 28:691–692.

    PubMed  CAS  Google Scholar 

  8. Knight DA, Hejmanowski AQ, Dierksheide JE et al. Inhibition of herpes simplex virus type 1 by the experimental immunosuppressive agent leflunomide. Transplantation 2001; 71:170–174.

    Article  PubMed  CAS  Google Scholar 

  9. Waldman WJ, Knight DA, Lurain NS et al. Novel mechanism of inhibition of cytomegalovirus by the experimental immunosuppressive agent leflunomide. Transplantation 1999; 68:814–825.

    Article  PubMed  CAS  Google Scholar 

  10. Waldman WJ, Knight DA, Blinder L et al. Inhibition of cytomegalovirus in vitro and in vivo by the experimental immunosuppressive agent leflunomide. Intervirology 1999; 42:412–418.

    Article  PubMed  CAS  Google Scholar 

  11. Sponsor: Hoechst Marion Roussel. Summary of Nda 20–905. Clinical Pharmacology/Biopharmaceutics Review 1998; 31–33.

    Google Scholar 

  12. Williams JW, Mital D, Chong A et al. Experiences with leflunomide in solid organ transplantation. Transplantation 2002; 73:358–366.

    Article  PubMed  CAS  Google Scholar 

  13. Elder RT, Xu X, Williams JW et al. The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J Immunol 1997; 159:22–27.

    PubMed  CAS  Google Scholar 

  14. Ghosh S, Zheng Y, Jun X et al. Alpha-cyano-beta-hydroxy-beta-methyl-N-[4-(Trifluoromethoxy)phenyl] propenamide: An inhibitor of the epidermal growth factor receptor tyrosine kinase with potent cytotoxic activity against breast cancer cells. Clin Cancer Res 1998; 4:2657–2668.

    PubMed  CAS  Google Scholar 

  15. Mahajan S, Ghosh S, Sudbeck EA et al. Rational design and synthesis of a novel anti-leukemic agent targeting bruton’s tyrosine kinase (Btk), Lfm-A13 [Alpha-Cyano-Beta-Hydroxy-Beta-Methyl-N-(2, 5-Dibromophenyl)propenamide]. J Biol Chem 1999; 274:9587–9599.

    Article  PubMed  CAS  Google Scholar 

  16. Mattar T, Kochhar K, Bartlett R et al. Inhibition of the epidermal growth factor receptor tyrosine kinase activity by leflunomide. Febs Lett 1993; 334:161–164.

    Article  PubMed  CAS  Google Scholar 

  17. Shawver LK, Schwartz DP, Mann E et al. Inhibition of platelet-derived growth factor-mediated signal transduction and tumor growth by N-[4-(Trifluoromethyl)-Phenyl]5-Methylisoxazole-4-Carboxamide. Clin Cancer Res 1997; 3:1167–1177.

    PubMed  CAS  Google Scholar 

  18. Siemasko K, Chong AS, Jack HM et al. Inhibition of Jak3 and Stat6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in Iggl production. J Immunol 1998; 160:1581–1588.

    PubMed  CAS  Google Scholar 

  19. Xu X, Williams JW, Bremer EG et al. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J Biol Chem 1995; 270:12398–12403.

    Article  PubMed  CAS  Google Scholar 

  20. Xu X, Blinder L, Shen J et al. In vivo mechanism by which leflunomide controls lymphoproliferative and autoimmune disease in Mrl/Mpj-Lpr/Lpr mice. J Immunol 1997; 159:167–174.

    PubMed  CAS  Google Scholar 

  21. Xu X, Shen J, Mall JW et al. In vitro and in vivo antitumor activity of a novel immunomodulatory drug, leflunomide: Mechanisms of action. Biochem Pharmacol 1999; 58:1405–1413.

    Article  PubMed  CAS  Google Scholar 

  22. Mcchesney LP, Xiao F, Sankary HN et al. An evaluation of leflunomide in the canine renal trans plantation model transplantation 1994; 57:1717–1722.

    CAS  Google Scholar 

  23. Sankary HN, Yin DP, Chong AS et al. Fk506 treatment in combination with leflunomide in hamster-to-rat heart and liver Xenograft transplantation. Transplantation 1998; 66:832–837.

    Article  PubMed  CAS  Google Scholar 

  24. Cherwinski HM, Cohn RG, Cheung P et al. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. J Pharmacol Exp Ther 1995; 275:1043–1049.

    PubMed  CAS  Google Scholar 

  25. Davis JP, Cain GA, Pitts WJ et al. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry 1996; 35:1270–1273.

    Article  PubMed  CAS  Google Scholar 

  26. Knecht W, Loffler M. Species-related inhibition of human and rat dihydroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives. Biochem Pharmacol 1998; 56:1259–1264.

    Article  PubMed  CAS  Google Scholar 

  27. Williamson RA, Yea CM, Robson PA et al. Dihydroorotate dehydrogenase is a high affinity binding protein for A77 1726 and mediator of a range of biological effects of the immunomodulatory compound. J Biol Chem 1995; 270:22467–22472.

    Article  PubMed  CAS  Google Scholar 

  28. Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks tnf-dependent nuclear factor-kappa B activation and gene expression. J Immunol 1999; 162:2095–2102.

    PubMed  CAS  Google Scholar 

  29. Cherwinski HM, Byars N, Ballaron SJ et al. Leflunomide interferes with pyrimidine nucleotide biosynthesis. Inflamm Res 1995; 44:317–322.

    Article  PubMed  CAS  Google Scholar 

  30. Silva Jr HT, Cao W, Shorthouse RA et al. In vitro and in vivo effects of leflunomide, brequinar, and cyclosporine on pyrimidine biosynthesis. Transplant Proc 1997; 29:1292–1293.

    Article  PubMed  CAS  Google Scholar 

  31. Allison AC. Immunosuppressive drugs: The first 50 years and a glance forward. Immunopharmacology 2000; 47:63–83.

    Article  PubMed  CAS  Google Scholar 

  32. Nair RV, Cao W, Morris RE. Inhibition of smooth muscle cell proliferation in vitro by leflunomide. A new immunosuppressant, is antagonized by uridine immunol. Lett 1995; 47:171–174.

    CAS  Google Scholar 

  33. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79:1283–1316.

    PubMed  CAS  Google Scholar 

  34. Border WA, Okuda S, Languino LR et al. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 1990; 346:371–374.

    Article  PubMed  CAS  Google Scholar 

  35. Buchdunger E, Zimmermann J, Mett H et al. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc Natl Acad Sci USA 1995; 92:2558–2562.

    Article  PubMed  CAS  Google Scholar 

  36. Doi T, Vlassara H, Kirstein M et al. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci USA 1992; 89:2873–2877.

    Article  PubMed  CAS  Google Scholar 

  37. Floege J, Eng E, Young BA et al. Infusion of platelet-derived growth factor or basic flbroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest 1993; 92:2952–2962.

    Article  PubMed  CAS  Google Scholar 

  38. Floege J, Johnson RJ. Multiple roles for platelet-derived growth factor in renal disease. Miner Electrolyte Metab 1995; 21:271–282.

    PubMed  CAS  Google Scholar 

  39. Floege J, Ostendorf T, Janssen U et al. Novel approach to specific growth factor inhibition in vivo: Antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol 1999; 154:169–179.

    PubMed  CAS  Google Scholar 

  40. Gilbert RE, Kelly DJ, Mckay T et al. Pdgf signal transduction inhibition ameliorates experimental mesangial proliferative glomerulonephritis. Kidney Int 2001; 59:1324–1332.

    Article  PubMed  CAS  Google Scholar 

  41. Iida H, Seifert R, Alpers CE et al. Platelet-derived growth factor (Pdgf) and Pdgf receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci USA 1991; 88:6560–6564.

    Article  PubMed  CAS  Google Scholar 

  42. Isaka Y, Fujiwara Y, Ueda N et al. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney. J Clin Invest 1993; 92:2597–2601.

    Article  PubMed  CAS  Google Scholar 

  43. Isaka Y, Brees DK, Ikegaya K et al. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 1996; 2:418–423.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson RJ, Raines EW, Floege J et al. Inhibition of mesangial cell proliferation and matrix expansion in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J Exp Med 1992; 175:1413–1416.

    Article  PubMed  CAS  Google Scholar 

  45. Ostendorf T, Kunter U, Grone HJ et al. Specific antagonism of Pdgf prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 2001; 12:909–918.

    PubMed  CAS  Google Scholar 

  46. Ostendorf T, Kunter U, Van Roeyen C et al. The effects of platelet-derived growth factor antagonism in experimental glomerulonephritis are independent of the transforming growth factor-beta system. J Am Soc Nephrol 2002; 13:658–667.

    PubMed  CAS  Google Scholar 

  47. Tang WW, Ulich TR, Lacey DI et al. Platelet-derived growth factor-bb induces renal tubulointerstitial myofibroblast formation and tubulointerstitial fibrosis. Am J Pathol 1996; 148:1169–1180.

    PubMed  CAS  Google Scholar 

  48. Throckmorton DC, Brogden AP, Min B et al. Pdgf and Tgf-beta mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 1995; 48:111–117.

    Article  PubMed  CAS  Google Scholar 

  49. Yagi M, Kato S, Kobayashi Y et al. Beneficial effects of a novel inhibitor of platelet-derived growth factor Receptor autophosphorylation in the rat with mesangial proliferative glomerulonephritis. Gen Pharmacol 1998; 31:765–773.

    PubMed  CAS  Google Scholar 

  50. Dimitrijevic M, Bartlett RR. Leflunomide, A novel immunomodulating drug, Inhibits homotypic adhesion of mononuclear cells in rheumatoid arthritis. Transplant Proc 1996; 28:3086–3087.

    PubMed  CAS  Google Scholar 

  51. Kraan MC, De Koster BM, Elferink JG et al. Inhibition of neutrophil migration soon after initiation of treatment with leflunomide or methotrexate in patients with rheumatoid arthritis: Findings in a prospective, randomized, double-blind clinical trial in fifteen patients. Arthritis Rheum 2000; 43:1488–1495.

    Article  PubMed  CAS  Google Scholar 

  52. Miljkovic D, Samardzic T, Drakulic D et al. Immunosuppressants leflunomide and mycophenolic acid inhibit fibroblast Il-6 production by distinct mechanisms. Cytokine 2002; 19:181–186.

    Article  PubMed  CAS  Google Scholar 

  53. Siemasko KF, Chong AS, Williams JW et al. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation 1996; 61:635–642.

    Article  PubMed  CAS  Google Scholar 

  54. Mizushima Y, Amano Y, Kitagawa H et al. Oral administration of leflunomide (Hwa486) results in prominent suppression of immunoglobulin E formation in a rat type 1 allergy model. J Pharmacol Exp Ther 1999; 288:849–857.

    PubMed  CAS  Google Scholar 

  55. Burger D, Begue-Pastor N, Benavent S et al. The active metabolite of leflunomide, A77 1726, inhibits the production of prostaglandin E(2), matrix metalloproteinase 1 and interleukin 6 in human fibroblast-like synoviocytes. Rheumatology (Oxford) 2003; 42:89–96.

    Article  PubMed  CAS  Google Scholar 

  56. Pinschewer DD, Ochsenbein AF, Fehr T et al. Leflunomide-mediated suppression of antiviral an tibody and T cell responses: Differential restoration by uridine. Transplantation 2001; 72:712–719.

    Article  PubMed  CAS  Google Scholar 

  57. Waldman WJ, Bickerstaff A, Gordillo G et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. Transplantation 2001; 72:1578–1582.

    Article  PubMed  CAS  Google Scholar 

  58. Swan SK, Crary GS, Guijarro C et al. Immunosuppressive effects of leflunomide in experimental chronic vascular rejection. Transplantation 1995; 60:887–890.

    Article  PubMed  CAS  Google Scholar 

  59. Xiao F, Chong A, Shen J et al. Pharmacologically induced regression of chronic transplant rejection. Transplantation 1995; 60:1065–72.

    Article  PubMed  CAS  Google Scholar 

  60. Kemp E, Dieperink H, Jensen J et al. Newer immunosuppressive drugs in concordant Xenografting-transplantation of hamster heart to rat. Xenotransplantation 1994; 1:102–108.

    Article  Google Scholar 

  61. Savikko J, Von Willebrand E, Hayry P. Leflunomide analogue Fk778 is vasculoprotective independent of its immunosuppressive effect: Potential applications for restenosis and chronic rejection. Transplantation 2003; 76:455–458.

    Article  PubMed  CAS  Google Scholar 

  62. Hardinger KL, Wang CD, Schnitzler MA et al. Prospective, Pilot, Open-label, Short-term study of conversion to leflunomide reverses chronic renal allograft dysfunction. Am J Transplant 2002; 2:867–871.

    Article  PubMed  CAS  Google Scholar 

  63. Avery RK, Bolwell BJ, Yen-Lieberman B et al. Use of leflunomide in an allogeneic bone marrow transplant recipient with refractory cytomegalovirus infection. Bone Marrow Transplant 2004.

    Google Scholar 

  64. John GT, Manivannan J, Chandy S et al. Leflunomide therapy for cytomegalovirus disease in renal allograft recepients. Transplantation 2004; 77:1460–1461.

    Article  PubMed  CAS  Google Scholar 

  65. Josephson MA, Kadambi PV, Javaid B et al. The use of Leflunomide in virally infected transplant patients. J Am Soc Nephrol 2004; 15:523a.

    Google Scholar 

  66. Racusen LC, Solez K, Colvin RB et al. The Banff 97 working classification of renal allografit pathology. Kidney Int 1999; 55:713–723.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Josephson, M.A., Javaid, B., Kadambi, P.V., Meehan, S.M., Williams, J.W. (2006). Leflunomide in Solid Organ Transplantation and Polyoma Virus Infection. In: Ahsan, N. (eds) Polyomaviruses and Human Diseases. Advances in Experimental Medicine and Biology, vol 577. Springer, New York, NY. https://doi.org/10.1007/0-387-32957-9_18

Download citation

Publish with us

Policies and ethics