Skip to main content

Magnetic Resonance Spectroscopy of Traumatic Brain Injury and Concussion

  • Chapter
Foundations of Sport-Related Brain Injuries

Abstract

Imaging modalities such as CT and magnetic resonance imaging (MRI) are powerful tools to detect and assess focal injury such as hemorrhagic lesions and edema and brain swelling in severe injury. However, acute and chronic injury at a cellular level is sometimes difficult to discern from normal features by anatomical imaging. Magnetic resonance spectroscopy (MRS) offers a unique non-invasive approach to assess injury at microscopic levels by quantifying cellular metabolites. Most clinical MRI systems are equipped with this option and MRS is thus a widely available modality. For the brain in particular, MRS has been a powerful research tool and has also been proven to provide additional clinically relevant information for several disease families such as brain tumors, metabolic disorders, and systemic diseases. The most widely-available MRS method, proton (1H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for patient studies if indicated. The findings obtained with MRS in concussion and more severe head trauma are heterogeneous, reflecting the different time after injury, degree of injury and different physiologic and pathologic response of the brain to injury in individuals. The most important findings are that elevated lactate (and lipids) in apparently normal tissue observed 2–5 days after injury are indicators of severe global hypoxic injury and poor outcome. Also, N-acetylaspartate (NAA), a marker for “healthy” neurons and axons, is generally reduced in traumatic brain injury signaling neuronal and axonal loss/damage. The extent of NAA reduction after injury is an objective and quantitative surrogate marker for the severity of injury and is useful for outcome prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badar-Goffer, R.S., Ben-Yoseph, O., Bachelard, H.S., Morris, P.G. (1992). Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochemedical Journal, 282 (Pt 1), 225–230.

    CAS  Google Scholar 

  • Baslow, M.H. (2000). Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. Journal of Neurochemistry, 75(2),453–459.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, F. (1946). Nuclear Induction. Physical. Reveview, 70, 460.

    Article  CAS  Google Scholar 

  • Bluml, S., Seymour, K.J., Ross, B.D. (1999). Developmental changes in choline-and ethanolamine-containing compounds measured with proton-decoupled (31) P MRS in in vivo human brain. Magnetic Resonance Medicine, 42(4), 643–654.

    Article  CAS  Google Scholar 

  • Bottomley, P.A. (1984). Inventor Selective volume method for performing localized NMR spectroscopy. USA patent US patent 4 480 228.

    Google Scholar 

  • Bottomley, P.A. (1987). Spatial localization in NMR spectroscopy in vivo. Annals of New Yourk Academy of Science, 508, 333–348.

    CAS  Google Scholar 

  • Brand, A., Richter-Landsberg, C., Leibfritz, D. (1993). Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Developmental Neuroscience, 15(3–5), 289–298.

    PubMed  CAS  Google Scholar 

  • Brooks, W.M., Friedman, S.D., Gasparovic, C. (2001). Magnetic resonance spectroscopy in traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(2), 149–164.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, W.M., Stidley, C.A., Petropoulos, H., Jung, R.E., Weers, D.C., Friedman, S.D., Barlow, M.A., Sibbitt, W.L., Jr., Yeo, R.A. (2000). Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. Journal of Neurotrauma, 17(8), 629–640.

    Article  PubMed  CAS  Google Scholar 

  • Cecil, K.M., Hills, E.C., Sandel, M.E., Smith, D.H, Mclntosh, T.K., Mannon, L.J., Sinson, G.P., Bagley, L.J., Grossman, R.I., Lenkinski, R.E. (1998). Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. Journal of Neurosurgery, 88(5), 795–801.

    Article  PubMed  CAS  Google Scholar 

  • Choe, B.Y., Suh, T.S., Choi, K.H., Shinn, K.S., Park, C.K., Kang, J.K. (1995). Neuronal dysfunction in patients with closed head injury evaluated by in vivo 1H magnetic resonance spectroscopy. Invest Radiology, 30(8), 502–506.

    CAS  Google Scholar 

  • Condon, B., Oluoch-Olunya, D., Hadley, D., Teasdale, G., Wagstaff, A. (1998). Early 1H magnetic resonance spectroscopy of acute head injury: four cases. Journal of Neurotrauma, 15(8), 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Daikhin, Y., Yudkoff, M. (2000). Compartmentation of brain glutamate metabolism in neurons and glia. Journal of Nutrition, 130(4S Suppl), 1026S–1031S.

    PubMed  CAS  Google Scholar 

  • Danielsen, E.R., Henriksen, O. (1994). Absolute quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse. Quantification of brain water and metabolites. NMR Biomedical, 7(7),311–318.

    CAS  Google Scholar 

  • Erecinska, M., Silver, I.A. (1990). Metabolism and role of glutamate in mammalian brain. Progress in Neurobiology, 35(4), 245–296.

    Article  PubMed  CAS  Google Scholar 

  • Flint, A.C., Liu, X., Kriegstein, A.R. (1998). Nonsynaptic glycine receptor activation during early neocortical development. Neuron, 20(1), 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Frahm, J., Merboldt, K., Haenicke, W. (1987). Localized proton spectroscopy using stimulated echos. Journal of Magnetic Resonance, 72, 502–508.

    CAS  Google Scholar 

  • Friedman, S.D., Brooks, W.M., Jung. R.E., Chiulli, S.J., Sloan, J.H., Montoya, B.T., Hart, B.L., Yeo, RA. (1999). Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology, 52(7), 1384–1391.

    PubMed  CAS  Google Scholar 

  • Garnett, M.R., Blamire, A.M., Corkill, R.G., Cadoux-Hudson, T.A., Rajagopalan, B., Styles, P. (2000). Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain, (Pt 10), 2046–2054.

    Google Scholar 

  • Gasparovic, C., Arfai, N., Smid, N., Feeney, D.M. (2001). Decrease and recovery of N-acetylaspartate/creatine in rat brain remote from focal injury. Journal of Neurotrauma, 18(3), 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S.S., Thomas, D.G., Van Bruggen, N., Gadian, D.G., Peden, C.J., Bell, J.D., Cox, I.J., Menon, D.K., Iles, R.A., Bryant, D.J., et al. (1990). Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. Journal of Computational Assistance in Tomography, 14(4), 497–504.

    Article  CAS  Google Scholar 

  • Govindaraju, V., Gauger, G.E., Manley, G.T., Ebel, A., Meeker, M., Maudsley, A.A. (2004). Volumetric proton spectroscopic imaging of mild traumatic brain injury. AJNR American Journal of Neuroradiology, 25(5), 730–737.

    PubMed  Google Scholar 

  • Haseler, L.J., Arcinue, E., Danielsen, E.R., Bluml, S., Ross, B.D. (1997). Evidence from proton magnetic resonance spectroscopy for a metabolic cascade of neuronal damage in shaken baby syndrome. Pediatrics 99(1), 4–14.

    Article  PubMed  CAS  Google Scholar 

  • Holshouser, B., A., Ashwal, S., Luh, G.Y., Shu, S., Kahlon, S., Auld, K.L., Tomasi, L.G., Perkin, R.M., Hinshaw, D.B., Jr. (1997). Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology, 202(2), 487–496.

    PubMed  CAS  Google Scholar 

  • Holshouser, B.A., Ashwal, S., Shu, S., Hinshaw, D.B., Jr. (2000). Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. Journal of Magnetic Resonance Imaging, 11(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Holshouser, B.A., Tong. K.A., Ashwal, S. (2005). Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR American Journal Neuroradiology, 26(5), 1276–1285.

    Google Scholar 

  • Howe, F.A., Barton, S.J., Cudlip, S.A., Stubbs, M., Saunders, D.E., Murphy, M., Wilkins, P., Opstad, K.S, Doyle, V.L., McLean, M.A., Bell, B.A., Griffiths, J.R. (2003). Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magnetic Resonance Medicine, 49(2), 223–232.

    Article  CAS  Google Scholar 

  • Jope, R.S., Jenden, D.J. (1979). Choline and phospholipid metabolism and the synthesis of acetylcholine in rat brain. Journal of Neuroscience Research, 4(1), 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Kovanlikaya, A., Panigrahy, A., Krieger, M.D., Gonzalez-Gomez, I., Ghugre, N., McComb, J.G., Gilles, F.H., Nelson, M.D., Bluml, S. (2005). Untreated Pediatric Primitive Neuroectodermal Tumor in Vivo: Quantitation of Taurine with MR Spectroscopy. Radiology, 236(3), 1020–1025.

    PubMed  Google Scholar 

  • Kreis, R. (1992). Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-l MR spectroscopy. Radiology, 182(1), 19–27.

    PubMed  CAS  Google Scholar 

  • Kreis, R. (1997). Quantitative localized 1H MR spectroscopy for clinical use. Progress in NMR Spectroscopy, 31, 155–195.

    Article  CAS  Google Scholar 

  • Kreis, R., Ernst, T., Ross, B.D. (1993). Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magnetic Resonance Medicine, 30(4), 424–437.

    CAS  Google Scholar 

  • Kreis, R., Hofmann, L., Kuhlmann, B., Boesch, C., Bossi, E., Hueppi, P.S. (2002). Brain Metabolite Composition During Early Human Brain Development as Measured by Quantitative In Vivo 1H Magnetic Resonance Spectroscopy. Magnetic Resonance Medicine, 48, 949–958.

    Article  CAS  Google Scholar 

  • Lien, Y.H., Shapiro, J.I, Chan, L. (1990). Effects of hypernatremia on organic brain osmoles. Journal of Clinical Invest, 85(5), 1427–1435.

    CAS  Google Scholar 

  • Macmillan, C.S., Wild, J.M., Wardlaw, J.M., Andrews, P.J., Marshall, I., Easton, V.J. (2002). Traumatic brain injury and subarachnoid hemorrhage: in vivo occult pathology demonstrated by magnetic resonance spectroscopy may not be “ischaemic”. A primary study and review of the literature. Acta Neurochemistry, (Wien), 144(9), 853–862.

    Article  CAS  Google Scholar 

  • Magistretti, P.J., Pellerin, L., Rothman, D.L., Shulman, R.G. (1999). Energy on demand. Science, 283(5401), 496–497.

    Article  PubMed  CAS  Google Scholar 

  • Miller, B.L. (1991). A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomedicine, 4(2), 47–52.

    CAS  Google Scholar 

  • Moreno-Torres, A., Martinez-Perez, I., Baquero, M., Campistol, J., Capdevila, A., Arus, C., Pujol, J. (2004). Taurine detection by proton magnetic resonance spectroscopy in medulloblastoma: Contribution to noninvasive differential diagnosis with cerebellar astrocytomas. Neurosurgery, 55, 824–829.

    Article  PubMed  Google Scholar 

  • Ordidge, R.J., Connelly, A., B., Lohman, J.A. (1986). Image-selected in-vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. Journal of Magnetic Resonance, 66, 283–294.

    CAS  Google Scholar 

  • Panigrahy, A., Krieger, M., Gonzalez-Gomez I, Liu. X., McComb, J., Finlay, J., Nelson, M., Gilles, F., Blüml. S. (2005). Quantitative short echo time 1H magnetic resonance spectroscopy of untreated pediatric brain tumors: Pre-operative diagnosis and characterization. AJNR American Journal Neuroradiology, in press.

    Google Scholar 

  • Pfefferbaum, A., Adalsteinsson, E., Spielman, D., Sullivan, E.V., Lim, K.O. (1999). In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magnetic Resonance Medicine, 41(2), 276–284.

    Article  CAS  Google Scholar 

  • Provencher, S.W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance Medicine, 30(6), 672–679.

    CAS  Google Scholar 

  • Purcell, E.M., Torrey, H.C., Pound, R.V. (1946). Resonance absorption by nuclear magnetic moments in a solid. Physical Review, 69, 37–38.

    Article  CAS  Google Scholar 

  • Ricci, R., Barbarella, G., Musi, P., Boldrini, P., Trevisan, C., Basaglia, N. (1997). Localised proton MR spectroscopy of brain metabolism changes in vegetative patients. Neuroradiology, 39(5), 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Ross, B.D., Ernst, T., Kreis, R., Haseler, L.J., Bayer, S., Danielsen, E., Bluml, S., Shonk, T., Mandigo, J.C., Caton, W., Clark, C., Jensen, S.W., Lehman, N.L., Arcinue, E., Pudenz, R., Shelden, C.H. (1998). 1H MRS in acute traumatic brain injury. Journal of Magnetic Resonance Imaging 8(4), 829–840.

    PubMed  CAS  Google Scholar 

  • Schuhmann, M.U., Stiller, D., Skardelly, M., Thomas, S., Samii, M., Brinker, T. (2002). Long-time in-vivo metabolic monitoring following experimental brain contusion using proton magnetic resonance spectroscopy. Acta Neurochir Supplement, 81, 209–212.

    CAS  Google Scholar 

  • Seymour, K.J., Bluml, S., Sutherling, J., Sutherling, W., Ross, B.D. (1999). Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. Magma, 8(1), 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Shutter, L., Tong, K.A., Holshouser, B.A. (2004). Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction. Journal of Neurotrauma, 21(12), 1693–1705.

    Article  PubMed  Google Scholar 

  • Signorctti, S., Marmarou, A., Tavazzi, B., Lazzarino, G., Beaumont, A., Vagnozzi, R. (2001). N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. Journal of Neurotrauma, 18(10), 977–991.

    Article  Google Scholar 

  • Tallan, H.H. (1957). Studies on the distribution of N-acetyl-L-aspartic acid in brain. Journal of Biological Chemistry, 224(1), 41–45.

    PubMed  CAS  Google Scholar 

  • Videen, J.S. (1995). Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. Journal of Clinical Investigation, 95(2), 788–793.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Blüml, S., Brooks, W.M. (2006). Magnetic Resonance Spectroscopy of Traumatic Brain Injury and Concussion. In: Slobounov, S., Sebastianelli, W. (eds) Foundations of Sport-Related Brain Injuries. Springer, Boston, MA . https://doi.org/10.1007/0-387-32565-4_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-32565-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32564-4

  • Online ISBN: 978-0-387-32565-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics