Skip to main content

Rheological Properties of Foods

  • Chapter
Physical Properties of Foods

Part of the book series: Food Science Text Series ((FSTS))

Abstract

In this chapter, rheological properties of foods are discussed, concentrating on the principles of flow behavior and deformation of food systems. The principles of viscosity and texture measurement methods and the devices used in these methods are explained in detail. In addition, models used to understand the rheology of food materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • AACC (1988). Approved Methods of the AACC, AACC Method 74-09. St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Abu-Jdayil, B., & Mohameed, H.A. (2004). Time-dependent flow properties of starch-milk-sugar pastes. European Food Research & Technology, 218, 123–127.

    Article  CAS  Google Scholar 

  • Arslan, E., Yener, M.E., & Esin, A. (2005). Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends. Journal of Food Engineering, 69, 167–172.

    Article  Google Scholar 

  • Arslanoglu, F.N., Kar, F., & Arslan, N. (2005). Rheology of peach pulp as affected by temperature and added granular activated carbon. Journal of Food Science and Technology-Mysore, 42, 325–331.

    CAS  Google Scholar 

  • Bird, R.B., Stewart, W.E., & Lightfoot, E.N. (1960). Transport Phenomena. New York: John Wiley & Sons.

    Google Scholar 

  • Blahovec, J. (2003). Activation volume from stress relaxation curves in raw and cooked potato. International Journal of Food Properties, 6, 183–193.

    Article  Google Scholar 

  • Bloksma, A.H. (1990). Rheology of the breadmaking process. Cereal Foods World, 35, 228–236.

    Google Scholar 

  • Bohlin, L., & Carlson, T.LG. (1980). Dynamic viscoelastic properties of wheat flour doughs: dependence on mixing time. Cereal Chemistry, 57, 175–181.

    Google Scholar 

  • Bourne, M.C. (1966). Measurement of shear and compression components of puncture tests. Journal of Food Science, 31, 282–291.

    Article  Google Scholar 

  • Bourne, M.C. (1982). Food Texture and Viscosity. New York: Academic Press.

    Google Scholar 

  • Bourne, M.C. (1990). Basic principles of texture measurement. In H. Faridi & J.M. Faubion (Eds.), Dough Rheology and Baked Product Texture (pp. 331–342). New York: AVI/Van Nostrand Reinhold.

    Google Scholar 

  • Bruns, A.J., & Bourne, M.C. (1975). Effects of sample dimensions on the snapping force of crisp foods. Experimental verification of a mathematical model. Journal of Texture Studies, 6, 445–458.

    Article  Google Scholar 

  • Casson, N. (1959). A flow equation for pigment-oil suspensions of the printing oil type. In C.C. Mill (Ed.), Rheology of Dispersed Systems (pp. 82–104) New York: Pergamon Press.

    Google Scholar 

  • Chatraei, S., Macosko, C.W., & Winter, H.H. (1981). Lubricated squeezing flow: A new biaxial extensional rheometer. Journal of Rheology, 25, 467–467.

    Article  Google Scholar 

  • Dintiz, F.R., Berhow, M.A., Bagley, E.B., Wu, Y.V., & Felker, F.C. (1996). Shear-thickening behavior and shear-induced structure in gently solubilized starches. Cereal Chemistry, 73, 638–643.

    Google Scholar 

  • Dobraszczyk, B.J., & Morgenstern, M. (2003). Rheology and breadmaking process. Journal of Cereal Science, 38, 229–245.

    Article  CAS  Google Scholar 

  • Dobraszczyk, B. J., & Vincent, J. F.V. (1999). Measurement of mechanical properties of food materials in relation to texture: The materials approach. In A.J. Rosenthal (Ed.), Food Texture: Measurement and Perception (pp. 99–151). New York: Aspen.

    Google Scholar 

  • Edwards, N.M., Peressini, D., Dexter, J.E., & Mulvaney, S.T. (2001). Viscoelastic properties of durum wheat and common wheat dough of different strengths. Rheologica Acta, 40, 142–153.

    Article  CAS  Google Scholar 

  • Isikli, N.D., & Karababa, E.A. (2005). Rheological characterization of fenugreek paste (cemen). Journal of Food Engineering, 69, 185–190.

    Article  Google Scholar 

  • Kaur, L., Singh, N., Sodhi, N.S., & Gujral, H.S. (2002). Some properties of potatoes and their starches. I. Cooking, textural and rheological properties of potatoes. Food Chemistry, 79, 177–181.

    Article  CAS  Google Scholar 

  • Kaya, A., & Belibagli, K.B. (2002). Rheology of solid Gaziantep Pekmez. Journal of Food Engineering, 54, 221–226.

    Article  Google Scholar 

  • Krokida, M.K., Karathanos, V.T., & Maroulis, Z.B. (2000). Effect of osmotic dehydration on viscoelastic properties of apple and banana. Drying Technology, 18, 951–966.

    Article  CAS  Google Scholar 

  • Krokida, M.K., Maroulis, Z.B., & Saravacos, G.D. (2001). Rheological properties of fluid fruit and vegetable products: Compilation of literature data. International Journal of Food Properties, 4, 179–200.

    Article  Google Scholar 

  • Li, W., Dobraszczyk, B.J., & Schofield, J.D. (2003). Stress relaxation behavior of wheat dough, gluten and gluten fractions. Cereal Chemistry, 80, 333–338.

    Article  CAS  Google Scholar 

  • Loeb, L.B. (1965). The Kinetic Theory of Gases, 3rd ed. New York: Dover Publications.

    Google Scholar 

  • McCarthy, K.L., & Seymour, J.D. (1994). Gravity current analysis of the Bostwick consistometer for power law fluids. Journal of Texture Studies, 25, 207–220.

    Article  Google Scholar 

  • Mongia, G., & Ziegler, G.R. (2000). The role of particle size distribution of suspended solids in defining the flow properties of milk chocolate. International Journal of Food Properties, 3, 137–147.

    CAS  Google Scholar 

  • Mukprasirt, A., Herald, T.J., & Flores, R.A. (2000). Rheological characterization of rice flour-based batters. Journal of Food Science, 65, 1194–1199.

    Article  CAS  Google Scholar 

  • Munson, B.R., Young, D.F., & Okiishi, T.H. (1994). Fundamentals of Fluid Mechanics. New York: John Wiley & Sons.

    Google Scholar 

  • Pederson, L., Kaack, K., Bergsøe, M.N., & Adler-Nissen, J. (2004). Rheological properties of biscuit dough from different cultivars, and relationship to baking characteristics. Journal of Cereal Science, 39, 37–46.

    Article  Google Scholar 

  • Pomeranz, Y. (1987). Modern Cereal Science and Technology. New York: VCH.

    Google Scholar 

  • Rao, M.A. (1986). Rheological properties of fluid foods. In M.A. Rao & S.S.H. Rizvi (Eds.), Engineering Properties of Foods (pp. 1–48). New York: Marcel Dekker.

    Google Scholar 

  • Rao, M.A. (1999). Rheology of Fluid and Semisolid Foods: Principles and Applications. New York: Aspen.

    Google Scholar 

  • Reid, R.C., Prausnitz, J.M., & Sherwood, T.K. (1977). The Properties of Gases and Liquids, 3rd ed. New York: McGraw-Hill.

    Google Scholar 

  • Rha, C., & Pradipasera, P. (1986) Viscosity of proteins. In J.R. Mitchell, & D.A. Leward (Eds.), Functional Properties of Food Macromolecules (pp. 371–433). New York: Elsevier.

    Google Scholar 

  • Rosell, C.M., Rojas, J.A., & de Barber, C.B. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloid, 15, 75–81.

    Article  CAS  Google Scholar 

  • Safari-Ardi, M., & Phan-Thien, N. (1998). Stress relaxation and oscillatory tests to distinguish between doughs prepared from wheat flours of different varietal origin. Cereal Chemistry, 75, 80–84.

    Article  CAS  Google Scholar 

  • Sakiyan, O., Sumnu, G., Sahin, S., & Bayram, G. (2004). Influence of fat content and emulsifier type on the rheological properties of cake batter. European Food Research & Technology, 219, 635–638.

    Article  CAS  Google Scholar 

  • Seyhun, N. (2002). Retardation of Staling of Microwave Baked Cakes. MS thesis, Middle East Technical University, Ankara, Turkey.

    Google Scholar 

  • Simuang, J., Chiewchan, N., & Tansakul, A. (2004). Effects of fat content and temperature on apparent viscosity of coconut milk. Journal of Food Engineering, 64, 193–197.

    Article  Google Scholar 

  • Sivaramakrishnan, H.P., Senge, B., & Chattopadhyay, P.K (2004). Rheological properties of rice dough for making rice bread. Journal of Food Engineering, 62, 37–45.

    Article  Google Scholar 

  • Spies, R. (1990). Application of rheology in the bread industry. In H. Faridi & J.M. Faubion (Eds.), Dough Rheology and Baked Product Texture (pp. 343–361). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Steffe, J.F. (1996). Rheological methods in Food Process Engineering, 2nd ed. East Lansing, MI: Freeman Press (available at www.egr.msu.edu/simsteffe/freebook/offer.html).

    Google Scholar 

  • Tiziani, S., & Vodovotz, Y. (2005). Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids, 19, 45–52.

    Article  CAS  Google Scholar 

  • Van Vliet, T. (1999). Rheological classification of foods and instrumental techniques for their study. In A.J. Rosenthal (Ed.), Food Texture Measurement and Perception (pp. 65–98). New York: Aspen.

    Google Scholar 

  • Walstra, P. (1980). Evaluation of the firmness of butter. International Dairy Federation Document, 135, 4–11.

    Google Scholar 

  • Wang, F.C., & Sun, X.S. (2002). Creep recovery of wheat flour doughs and relationship to other physical dough tests and bread making performance. Cereal Chemistry, 79, 567–571.

    Article  CAS  Google Scholar 

  • Wilkes, J.O. (1999). Fluid Mechanics for Chemical Engineering. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Zaidul, I.S.M., Karim, A.A., Manan, D.M.A., Azlan, A., Norulaini, N.A.N., & Omar, A.K.M. (2003). Stress relaxation test for sago-wheat mixtures gel. International Journal of Food Properties, 6, 431–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Sahin, S., Sumnu, S.G. (2006). Rheological Properties of Foods. In: Physical Properties of Foods. Food Science Text Series. Springer, New York, NY. https://doi.org/10.1007/0-387-30808-3_2

Download citation

Publish with us

Policies and ethics